Infrared fixed pointIn physics, an infrared fixed point is a set of coupling constants, or other parameters, that evolve from initial values at very high energies (short distance) to fixed stable values, usually predictable, at low energies (large distance). This usually involves the use of the renormalization group, which specifically details the way parameters in a physical system (a quantum field theory) depend on the energy scale being probed. Conversely, if the length-scale decreases and the physical parameters approach fixed values, then we have ultraviolet fixed points.
CP violationIn particle physics, CP violation is a violation of CP-symmetry (or charge conjugation parity symmetry): the combination of C-symmetry (charge symmetry) and P-symmetry (parity symmetry). CP-symmetry states that the laws of physics should be the same if a particle is interchanged with its antiparticle (C-symmetry) while its spatial coordinates are inverted ("mirror" or P-symmetry). The discovery of CP violation in 1964 in the decays of neutral kaons resulted in the Nobel Prize in Physics in 1980 for its discoverers James Cronin and Val Fitch.
PionIn particle physics, a pion (or a pi meson, denoted with the Greek letter pi: _Pion) is any of three subatomic particles: _Pion0, _Pion+, and _Pion-. Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the lightest mesons and, more generally, the lightest hadrons. They are unstable, with the charged pions _Pion+ and _Pion- decaying after a mean lifetime of 26.033 nanoseconds (2.6033e-8 seconds), and the neutral pion _Pion0 decaying after a much shorter lifetime of 85 attoseconds (8.
Weak isospinIn particle physics, weak isospin is a quantum number relating to the electrically charged part of the weak interaction: Particles with half-integer weak isospin can interact with the _W boson+- bosons; particles with zero weak isospin do not. Weak isospin is a construct parallel to the idea of isospin under the strong interaction. Weak isospin is usually given the symbol T or I, with the third component written as T_3 or I_3. It can be understood as the eigenvalue of a charge operator.
Beta decayIn nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle (fast energetic electron or positron), transforming into an isobar of that nuclide. For example, beta decay of a neutron transforms it into a proton by the emission of an electron accompanied by an antineutrino; or, conversely a proton is converted into a neutron by the emission of a positron with a neutrino in so-called positron emission.
Accelerating expansion of the universeObservations show that the expansion of the universe is accelerating, such that the velocity at which a distant galaxy recedes from the observer is continuously increasing with time. The accelerated expansion of the universe was discovered during 1998 by two independent projects, the Supernova Cosmology Project and the High-Z Supernova Search Team, which both used distant type Ia supernovae to measure the acceleration.
Higgs bosonThe Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the quantum excitation of the Higgs field, one of the fields in particle physics theory. In the Standard Model, the Higgs particle is a massive scalar boson with zero spin, even (positive) parity, no electric charge, and no colour charge that couples to (interacts with) mass. It is also very unstable, decaying into other particles almost immediately upon generation.
Cosmic neutrino backgroundThe cosmic neutrino background (CNB or CνB) is the universe's background particle radiation composed of neutrinos. They are sometimes known as relic neutrinos. The CνB is a relic of the Big Bang; while the cosmic microwave background radiation (CMB) dates from when the universe was 379,000 years old, the CνB decoupled (separated) from matter when the universe was just one second old. It is estimated that today, the CνB has a temperature of roughly 1.95K. As neutrinos rarely interact with matter, these neutrinos still exist today.
BaryogenesisIn physical cosmology, baryogenesis (also known as baryosynthesis) is the physical process that is hypothesized to have taken place during the early universe to produce baryonic asymmetry, i.e. the imbalance of matter (baryons) and antimatter (antibaryons) in the observed universe. One of the outstanding problems in modern physics is the predominance of matter over antimatter in the universe. The universe, as a whole, seems to have a nonzero positive baryon number density.
Minimal Supersymmetric Standard ModelThe Minimal Supersymmetric Standard Model (MSSM) is an extension to the Standard Model that realizes supersymmetry. MSSM is the minimal supersymmetrical model as it considers only "the [minimum] number of new particle states and new interactions consistent with "Reality". Supersymmetry pairs bosons with fermions, so every Standard Model particle has a superpartner yet undiscovered. If discovered, such superparticles could be candidates for dark matter, and could provide evidence for grand unification or the viability of string theory.