Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Environment is assumed to play a negative role in quantum mechanics, destroying the coherence in a quantum system and, thus, randomly changing its state. However, for a quantum system that is initially in a degenerate ground state, the situation could be d ...
Entanglement forging based variational algorithms leverage the bipartition of quantum systems for addressing ground-state problems. The primary limitation of these approaches lies in the exponential summation required over the numerous potential basis stat ...
An enduring challenge in constructing mechanical-oscillator-based hybrid quantum systems is to ensure engineered coupling to an auxiliary degree of freedom and maintain good mechanical isolation from the environment, that is, low quantum decoherence, consi ...
We analyze the accuracy and sample complexity of variational Monte Carlo approaches to simulate the dynamics of many-body quantum systems classically. By systematically studying the relevant stochastic estimators, we are able to: (i) prove that the most us ...
Chaos sets a fundamental limit to quantum-information processing schemes. We study the onset of chaos in spatially extended quantum many-body systems that are relevant to quantum optical devices. We consider an extended version of the Tavis-Cummings model ...
Reprogrammable integrated optics provides a natural platform for tunable quantum photonic circuits, but faces challenges when high dimensions and high connectivity are involved. Here, we implement high-dimensional linear transformations on spatial modes of ...
Biphoton frequency combs (BFCs) are promising quantum sources for large-scale and high-dimensional quantum information and networking systems. In this context, the spectral purity of individual frequency bins will be critical for realizing quantum networki ...
With the capabilities such as single-photon detection, time stamping and high-speed acquisition, time-resolved imaging based on single-photon avalanche diode (SPAD) detectors has found significant applications across diverse domains, including but not limi ...
A new paradigm for data science has emerged, with quantum data, quantum models, and quantum computational devices. This field, called quantum machine learning (QML), aims to achieve a speedup over traditional machine learning for data analysis. However, it ...
Fields of technology as diverse as microwave filter construction, characterization of material interfaces with atomic precision, and detection of gravitational waves from astronomical sources employ mechanical resonators at their core. The utility of mecha ...