CPU cacheA CPU cache is a hardware cache used by the central processing unit (CPU) of a computer to reduce the average cost (time or energy) to access data from the main memory. A cache is a smaller, faster memory, located closer to a processor core, which stores copies of the data from frequently used main memory locations. Most CPUs have a hierarchy of multiple cache levels (L1, L2, often L3, and rarely even L4), with different instruction-specific and data-specific caches at level 1.
Arm (company)Arm (stylised in lowercase as arm, formerly an acronym for Advanced RISC Machines and originally Acorn RISC Machine) is a British semiconductor and software design company based in Cambridge, England whose primary business is the design of ARM processors (CPUs). It also designs other chips, provides software development tools under the DS-5, RealView and Keil brands, and provides systems and platforms, system-on-a-chip (SoC) infrastructure and software. As a "holding" company, it also holds shares of other companies.
Explicitly parallel instruction computingExplicitly parallel instruction computing (EPIC) is a term coined in 1997 by the HP–Intel alliance to describe a computing paradigm that researchers had been investigating since the early 1980s. This paradigm is also called Independence architectures. It was the basis for Intel and HP development of the Intel Itanium architecture, and HP later asserted that "EPIC" was merely an old term for the Itanium architecture. EPIC permits microprocessors to execute software instructions in parallel by using the compiler, rather than complex on-die circuitry, to control parallel instruction execution.
Classic RISC pipelineIn the history of computer hardware, some early reduced instruction set computer central processing units (RISC CPUs) used a very similar architectural solution, now called a classic RISC pipeline. Those CPUs were: MIPS, SPARC, Motorola 88000, and later the notional CPU DLX invented for education. Each of these classic scalar RISC designs fetches and tries to execute one instruction per cycle. The main common concept of each design is a five-stage execution instruction pipeline.
Cell (processor)Cell is a 64-bit multi-core microprocessor microarchitecture that combines a general-purpose PowerPC core of modest performance with streamlined coprocessing elements which greatly accelerate multimedia and vector processing applications, as well as many other forms of dedicated computation. It was developed by Sony, Toshiba, and IBM, an alliance known as "STI". The architectural design and first implementation were carried out at the STI Design Center in Austin, Texas over a four-year period beginning March 2001 on a budget reported by Sony as approaching US$400 million.
ComputingComputing is any goal-oriented activity requiring, benefiting from, or creating computing machinery. It includes the study and experimentation of algorithmic processes, and development of both hardware and software. Computing has scientific, engineering, mathematical, technological and social aspects. Major computing disciplines include computer engineering, computer science, cybersecurity, data science, information systems, information technology, digital art and software engineering.
Dynamic frequency scalingDynamic frequency scaling (also known as CPU throttling) is a power management technique in computer architecture whereby the frequency of a microprocessor can be automatically adjusted "on the fly" depending on the actual needs, to conserve power and reduce the amount of heat generated by the chip. Dynamic frequency scaling helps preserve battery on mobile devices and decrease cooling cost and noise on quiet computing settings, or can be useful as a security measure for overheated systems (e.g.
Manycore processorManycore processors are special kinds of multi-core processors designed for a high degree of parallel processing, containing numerous simpler, independent processor cores (from a few tens of cores to thousands or more). Manycore processors are used extensively in embedded computers and high-performance computing. Manycore processors are distinct from multi-core processors in being optimized from the outset for a higher degree of explicit parallelism, and for higher throughput (or lower power consumption) at the expense of latency and lower single-thread performance.
Graphics processing unitA graphics processing unit (GPU) is a specialized electronic circuit initially designed to accelerate computer graphics and (either on a video card or embedded on the motherboards, mobile phones, personal computers, workstations, and game consoles). After their initial design, GPUs were found to be useful for non-graphic calculations involving embarrassingly parallel problems due to their parallel structure. Other non-graphical uses include the training of neural networks and cryptocurrency mining.
Grid computingGrid computing is the use of widely distributed computer resources to reach a common goal. A computing grid can be thought of as a distributed system with non-interactive workloads that involve many files. Grid computing is distinguished from conventional high-performance computing systems such as cluster computing in that grid computers have each node set to perform a different task/application. Grid computers also tend to be more heterogeneous and geographically dispersed (thus not physically coupled) than cluster computers.