**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Belt distance between facets of space-filling zonotopes

2012

Journal paper

Journal paper

Abstract

To every d-dimensional polytope P with centrally symmetric facets one can assign a “subway map” such that every line of this “subway” contains exactly the facets parallel to one of the ridges of P. The belt diameter of P is the maximum number of subway lines one needs to use to get from one facet to another. We prove that the belt diameter of a d-dimensional space-filling zonotope does not exceed ⌈log2(4/5)d⌉.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (15)

Related publications (23)

Convex polytope

A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the -dimensional Euclidean space . Most texts use the term "polytope" for a bounded convex polytope, and the word "polyhedron" for the more general, possibly unbounded object. Others (including this article) allow polytopes to be unbounded. The terms "bounded/unbounded convex polytope" will be used below whenever the boundedness is critical to the discussed issue.

4-polytope

In geometry, a 4-polytope (sometimes also called a polychoron, polycell, or polyhedroid) is a four-dimensional polytope. It is a connected and closed figure, composed of lower-dimensional polytopal elements: vertices, edges, faces (polygons), and cells (polyhedra). Each face is shared by exactly two cells. The 4-polytopes were discovered by the Swiss mathematician Ludwig Schläfli before 1853. The two-dimensional analogue of a 4-polytope is a polygon, and the three-dimensional analogue is a polyhedron.

5-polytope

In geometry, a five-dimensional polytope (or 5-polytope) is a polytope in five-dimensional space, bounded by (4-polytope) facets, pairs of which share a polyhedral cell. A 5-polytope is a closed five-dimensional figure with vertices, edges, faces, and cells, and 4-faces. A vertex is a point where five or more edges meet. An edge is a line segment where four or more faces meet, and a face is a polygon where three or more cells meet. A cell is a polyhedron, and a 4-face is a 4-polytope.

We present the design of a motion planning algorithm that ensures safety for an autonomous vehicle. In particular, we consider a multimodal distribution over uncertainties; for example, the uncertain predictions of future trajectories of surrounding vehicl ...

2022,

We introduce a novel intrinsic volume concept in tropical geometry. This is achieved by developing the foundations of a tropical analog of lattice point counting in polytopes. We exhibit the basic properties and compare it to existing measures. Our exposit ...

2019Yuri Faenza, Manuel Francesco Aprile

Deterministic protocols are well-known tools to obtain extended formulations, with many applications to polytopes arising in combinatorial optimization. Although constructive, those tools are not output-efficient, since the time needed to produce the exten ...