Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the -dimensional Euclidean space . Most texts use the term "polytope" for a bounded convex polytope, and the word "polyhedron" for the more general, possibly unbounded object. Others (including this article) allow polytopes to be unbounded. The terms "bounded/unbounded convex polytope" will be used below whenever the boundedness is critical to the discussed issue. Yet other texts identify a convex polytope with its boundary. Convex polytopes play an important role both in various branches of mathematics and in applied areas, most notably in linear programming. In the influential textbooks of Grünbaum and Ziegler on the subject, as well as in many other texts in discrete geometry, convex polytopes are often simply called "polytopes". Grünbaum points out that this is solely to avoid the endless repetition of the word "convex", and that the discussion should throughout be understood as applying only to the convex variety (p. 51). A polytope is called full-dimensional if it is an -dimensional object in . Many examples of bounded convex polytopes can be found in the article "polyhedron". In the 2-dimensional case the full-dimensional examples are a half-plane, a strip between two parallel lines, an angle shape (the intersection of two non-parallel half-planes), a shape defined by a convex polygonal chain with two rays attached to its ends, and a convex polygon. Special cases of an unbounded convex polytope are a slab between two parallel hyperplanes, a wedge defined by two non-parallel half-spaces, a polyhedral cylinder (infinite prism), and a polyhedral cone (infinite cone) defined by three or more half-spaces passing through a common point. A convex polytope may be defined in a number of ways, depending on what is more suitable for the problem at hand. Grünbaum's definition is in terms of a convex set of points in space.
Aude Billard, Mikhail Koptev, Nadia Barbara Figueroa Fernandez
Alireza Karimi, Vaibhav Gupta, Elias Sebastian Klauser