Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Starting from the basic problem of reconstructing a 2-dimensional image given by its projections on two axes, one associates a model of edge coloring in a complete bipartite graph. The complexity of the case with k=3 colors is open. Variations and special ...
The vertex connectivity K of a graph is the smallest number of vertices whose deletion separates the graph or makes it trivial. We present the fastest known deterministic algorithm for finding the vertex connectivity and a corresponding separator. The time ...
Parity (matching theory) and connectivity (network flows) are two main branches of combinatorial optimization. In an attempt to understand better their interrelation, we study a problem where both parity and connectivity requirements are imposed. The main ...
Let G be a graph with n vertices and ea parts per thousand yen4n edges, drawn in the plane in such a way that if two or more edges (arcs) share an interior point p, then they properly cross one another at p. It is shown that the number of crossing points, ...
We show that every graph G with maximum degree three has a straight-line drawing in the plane using edges of at most five different slopes. Moreover, if G is connected and has at least one vertex of degree less than three, then four directions suffice. ...
Let P and Q be finite sets of points in the plane. In this note we consider the largest cardinality of a subset of the Minkowski sum S ⊆ P⊕Q which consist of convex independent points. We show that, if P and Q contain at most n points, then |S| = O(n^(4/3) ...
The graph coloring problem is one of the most famous problems in graph theory and has a large range of applications. It consists in coloring the vertices of an undirected graph with a given number of colors such that two adjacent vertices get different col ...
Given a point set P in the plane, the Delaunay graph with respect to axis-parallel rectangles is a graph defined on the vertex set P, whose two points p, q is an element of P are connected by an edge if and only if there is a rectangle parallel to the coor ...
We consider the problem of finding in a graph a set R of edges to be colored in red so that there are maximum matchings having some prescribed numbers of red edges. For regular bipartite graphs with n nodes on each side, we give sufficient conditions f ...
Routing packets is a central function of multi-hop wireless networks. Traditionally, there have been two paradigms for routing, either based on the geographical coordinates of the nodes (geographic routing), or based on the connectivity graph (topology-bas ...