Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Parity (matching theory) and connectivity (network flows) are two main branches of combinatorial optimization. In an attempt to understand better their interrelation, we study a problem where both parity and connectivity requirements are imposed. The main result is a characterization of undirected graphs G = (V,E) having a k-edge-connected T-odd orientation for every subset with |E| + |T| even. (T-odd orientation: the in-degree of v is odd precisely if v is in T.) As a corollary, we obtain that every (2k)-edge- connected graph with |V| + |E| even has a (k-1)-edge- connected orientation in which the in-degree of every node is odd. Along the way, a structural characterization will be given for digraphs with a root-node s having k edge- disjoint paths from s to every node and k-1 edge-disjoint paths from every node to s.
Etienne Michel François Bamas, Lars Rohwedder