Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The abundant pigment-protein membrane complex photosystem-I (PS-I) is at the heart of the Earth's energy cycle. It is the central molecule in the "Z-scheme'' of photosynthesis, converting sunlight into the chemical energy of life. Commandeering this intricately organized photosynthetic nanocircuitry and re-wiring it to produce electricity carries the promise of inexpensive and environmentally friendly solar power. We here report that dry PS-I stabilized by surfactant peptides functioned as both the light-harvester and charge separator in solar cells self-assembled on nanostructured semiconductors. Contrary to previous attempts at biophotovoltaics requiring elaborate surface chemistries, thin film deposition, and illumination concentrated into narrow wavelength ranges the devices described here are straightforward and inexpensive to fabricate and perform well under standard sunlight yielding open circuit photovoltage of 0.5 V, fill factor of 71%, electrical power density of 81 mu W/cm(2) and photocurrent density of 362 mu A/cm(2), over four orders of magnitude higher than any photosystem-based biophotovoltaic to date.