Computational statisticsComputational statistics, or statistical computing, is the bond between statistics and computer science. It means statistical methods that are enabled by using computational methods. It is the area of computational science (or scientific computing) specific to the mathematical science of statistics. This area is also developing rapidly, leading to calls that a broader concept of computing should be taught as part of general statistical education.
Numerical linear algebraNumerical linear algebra, sometimes called applied linear algebra, is the study of how matrix operations can be used to create computer algorithms which efficiently and accurately provide approximate answers to questions in continuous mathematics. It is a subfield of numerical analysis, and a type of linear algebra. Computers use floating-point arithmetic and cannot exactly represent irrational data, so when a computer algorithm is applied to a matrix of data, it can sometimes increase the difference between a number stored in the computer and the true number that it is an approximation of.
Branches of scienceThe branches of science, also referred to as sciences, scientific fields or scientific disciplines, are commonly divided into three major groups: Formal sciences: the study of formal systems, such as those under the branches of logic and mathematics, which use an a priori, as opposed to empirical, methodology. Natural sciences: the study of natural phenomena (including cosmological, geological, physical, chemical, and biological factors of the universe). Natural science can be divided into two main branches: physical science and life science (or biology).
Special linear Lie algebraIn mathematics, the special linear Lie algebra of order n (denoted or ) is the Lie algebra of matrices with trace zero and with the Lie bracket . This algebra is well studied and understood, and is often used as a model for the study of other Lie algebras. The Lie group that it generates is the special linear group. The Lie algebra is central to the study of special relativity, general relativity and supersymmetry: its fundamental representation is the so-called spinor representation, while its adjoint representation generates the Lorentz group SO(3,1) of special relativity.