Numerical methods for stochastic partial differential equations with multiple scales
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We consider a least-squares/relaxation finite element method for the numerical solution of the prescribed Jacobian equation. We look for its solution via a least-squares approach. We introduce a relaxation algorithm that decouples this least-squares proble ...
Global spectral methods offer the potential to compute solutions of partial differential equations numerically to very high accuracy. In this work, we develop a novel global spectral method for linear partial differential equations on cubes by extending th ...
The parallel Schwarz method (PSM) is an overlapping domain decomposition (DD) method to solve partial differential equations (PDEs). Similarly to classical nonoverlapping DD methods, the PSM admits a substructured formulation, that is, it can be formulated ...
The optimization of surface finish to improve performance, such as adhesion, friction, wear, fatigue life, or interfacial transport, occurs largely through trial and error, despite significant advancements in the relevant science. There are three central c ...
This thesis focuses on the numerical analysis of partial differential equations (PDEs) with an emphasis on first and second-order fully nonlinear PDEs. The main goal is the design of numerical methods to solve a variety of equations such as orthogonal maps ...
Wave phenomena manifest in nature as electromagnetic waves, acoustic waves, and gravitational waves among others.Their descriptions as partial differential equations in electromagnetics, acoustics, and fluid dynamics are ubiquitous in science and engineeri ...
In this thesis we explore uncertainty quantification of forward and inverse problems involving differential equations. Differential equations are widely employed for modeling natural and social phenomena, with applications in engineering, chemistry, meteor ...
Gossip algorithms and their accelerated versions have been studied exclusively in discrete time on graphs. In this work, we take a different approach and consider the scaling limit of gossip algorithms in both large graphs and large number of iterations. T ...
We introduce a local adaptive discontinuous Galerkin method for convection-diffusion-reaction equations. The proposed method is based on a coarse grid and iteratively improves the solution's accuracy by solving local elliptic problems in refined subdomains ...
Stabilized explicit methods are particularly efficient, for large systems of stiff stochastic differential equations (SDEs) due to their extended stability domain. However, they lose their efficiency when a severe stiffness is induced by very few "fast" de ...