Negative-feedback amplifierA negative-feedback amplifier (or feedback amplifier) is an electronic amplifier that subtracts a fraction of its output from its input, so that negative feedback opposes the original signal. The applied negative feedback can improve its performance (gain stability, linearity, frequency response, step response) and reduces sensitivity to parameter variations due to manufacturing or environment. Because of these advantages, many amplifiers and control systems use negative feedback.
Electrical loadAn electrical load is an electrical component or portion of a circuit that consumes (active) electric power, such as electrical appliances and lights inside the home. The term may also refer to the power consumed by a circuit. This is opposed to a power source, such as a battery or generator, which produces power. The term is used more broadly in electronics for a device connected to a signal source, whether or not it consumes power.
InfrasoundInfrasound, sometimes referred to as low frequency sound, describes sound waves with a frequency below the lower limit of human audibility (generally 20 Hz, as defined by the ANSI/ASA S1.1-2013 standard). Hearing becomes gradually less sensitive as frequency decreases, so for humans to perceive infrasound, the sound pressure must be sufficiently high. The ear is the primary organ for sensing low sound, but at higher intensities it is possible to feel infrasound vibrations in various parts of the body.
Anechoic chamberAn anechoic chamber (an-echoic meaning "non-reflective" or "without echoes") is a room designed to stop reflections or echoes of either sound or electromagnetic waves. They are also often isolated from energy entering from their surroundings. This combination means that a person or detector exclusively hears direct sounds (no reflected sounds), in effect simulating being outside in a free field. Anechoic chambers, a term coined by American acoustics expert Leo Beranek, were initially exclusively used to refer to acoustic anechoic chambers.
Echo suppression and cancellationEcho suppression and echo cancellation are methods used in telephony to improve voice quality by preventing echo from being created or removing it after it is already present. In addition to improving subjective audio quality, echo suppression increases the capacity achieved through silence suppression by preventing echo from traveling across a telecommunications network. Echo suppressors were developed in the 1950s in response to the first use of satellites for telecommunications.
Acoustic wave equationIn physics, the acoustic wave equation governs the propagation of acoustic waves through a material medium resp. a standing wavefield. The form of the equation is a second order partial differential equation. The equation describes the evolution of acoustic pressure or particle velocity u as a function of position x and time . A simplified (scalar) form of the equation describes acoustic waves in only one spatial dimension, while a more general form describes waves in three dimensions.
Sound intensitySound intensity, also known as acoustic intensity, is defined as the power carried by sound waves per unit area in a direction perpendicular to that area. The SI unit of intensity, which includes sound intensity, is the watt per square meter (W/m2). One application is the noise measurement of sound intensity in the air at a listener's location as a sound energy quantity. Sound intensity is not the same physical quantity as sound pressure. Human hearing is sensitive to sound pressure which is related to sound intensity.
French fashionFashion in France is an important subject in the culture and country's social life, as well, being an important part of its economy. Fashion design and production became prominent in France since 15th century. During the 17th century, fashion exploded into a rich industry, for exportation and local consumption. In the 19th century, fashion made a transition into specialisation for modern term haute couture, originated in the 1860s, bringing good taste to fashion argot.
MufflerA muffler (North American and Australian English) or silencer (British English) is a device for reducing the noise emitted by the exhaust of an internal combustion engine—especially a noise-deadening device forming part of the exhaust system of an automobile. Mufflers are installed within the exhaust system of most internal combustion engines. Mufflers are engineered as an acoustic device to reduce the loudness of the sound pressure created by the engine by acoustic quieting.
Load factor (electrical)In electrical engineering the load factor is defined as the average load divided by the peak load in a specified time period. It is a measure of the utilization rate, or efficiency of electrical energy usage; a high load factor indicates that load is using the electric system more efficiently, whereas consumers or generators that underutilize the electric distribution will have a low load factor. An example, using a large commercial electrical bill: peak demand = 436kW use = 57200kWh number of days in billing cycle = 30day Hence: load factor = ( [ 57200kWh / {30day × 24h/d} ] / 436kW ) × 100% = 18.