Publication

Interplay between the magnetic and electric degrees of freedom in multiferroic Co3TeO6

Helmuth Berger, Yang Zhao
2012
Journal paper
Abstract

Neutron diffraction, magnetic susceptibility, specific heat, and dielectric constant measurements of single-crystal Co3TeO6 have been measured to study the interplay between the ferroelectricity and magnetic order. Long-range incommensurate magnetic order develops below T-M1 = 26 K, which is followed by three additional zero-field phase transitions at T-M2 = 19.5 K, T-M3 = 18 K, and T-M4 = 16 K where the incommensurate order changes and commensurate order develops. In magnetic fields up to 14 T we find that the magnetic intensities and incommensurate wave vector are dramatically altered as ferroelectricity develops, with a fifth abrupt transition around 10 T. The overall behavior characterizes Co3TeO6 as a type-II multiferroic.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Magnetic moment
In electromagnetism, the magnetic moment is the magnetic strength and orientation of a magnet or other object that produces a magnetic field. Examples of objects that have magnetic moments include loops of electric current (such as electromagnets), permanent magnets, elementary particles (such as electrons), composite particles (such as protons and neutrons), various molecules, and many astronomical objects (such as many planets, some moons, stars, etc).
Magnetic field
A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to the magnetic field. A permanent magnet's magnetic field pulls on ferromagnetic materials such as iron, and attracts or repels other magnets.
Earth's magnetic field
Earth's magnetic field, also known as the geomagnetic field, is the magnetic field that extends from Earth's interior out into space, where it interacts with the solar wind, a stream of charged particles emanating from the Sun. The magnetic field is generated by electric currents due to the motion of convection currents of a mixture of molten iron and nickel in Earth's outer core: these convection currents are caused by heat escaping from the core, a natural process called a geodynamo.
Show more
Related publications (83)

Investigating field-induced magnetic order in Han purple by neutron scattering up to 25.9 T

Frédéric Mila, Bruce Normand, Philippe Heller, Nicolas Laflorencie

BaCuSi2O6 is a quasi-two-dimensional (2D) quantum antiferromagnet containing three different types of stacked, square-lattice bilayer hosting spin-1/2 dimers. Although this compound has been studied extensively over the last two decades, the critical appli ...
AMER PHYSICAL SOC2022

Multifunctional Gd2O3:Tm3+, Er3+, Nd3+ particles with luminescent and magnetic properties

Pavel Olshin

Development of novel materials with advanced properties is one of the main research directions of chemistry. New substances are not only crucial for many current technological applications but also should satisfy the needs of tomorrow. Industry often requi ...
2022

Scanning SQUID microscopy in a cryogen-free dilution refrigerator

Philip Johannes Walter Moll, Maja Deborah Bachmann

We report a scanning superconducting quantum interference device (SQUID) microscope in a cryogen-free dilution refrigerator with a base temperature at the sample stage of at least 30 mK. The microscope is rigidly mounted to the mixing chamber plate to opti ...
2021
Show more
Related MOOCs (28)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.