Connection (principal bundle)In mathematics, and especially differential geometry and gauge theory, a connection is a device that defines a notion of parallel transport on the bundle; that is, a way to "connect" or identify fibers over nearby points. A principal G-connection on a principal G-bundle P over a smooth manifold M is a particular type of connection which is compatible with the action of the group G. A principal connection can be viewed as a special case of the notion of an Ehresmann connection, and is sometimes called a principal Ehresmann connection.
Rotational symmetryRotational symmetry, also known as radial symmetry in geometry, is the property a shape has when it looks the same after some rotation by a partial turn. An object's degree of rotational symmetry is the number of distinct orientations in which it looks exactly the same for each rotation. Certain geometric objects are partially symmetrical when rotated at certain angles such as squares rotated 90°, however the only geometric objects that are fully rotationally symmetric at any angle are spheres, circles and other spheroids.
Improper rotationIn geometry, an improper rotation (also called rotation-reflection, rotoreflection, rotary reflection, or rotoinversion) is an isometry in Euclidean space that is a combination of a rotation about an axis and a reflection in a plane perpendicular to that axis. Reflection and inversion are each special case of improper rotation. Any improper rotation is an affine transformation and, in cases that keep the coordinate origin fixed, a linear transformation.
Lagrangian systemIn mathematics, a Lagrangian system is a pair (Y, L), consisting of a smooth fiber bundle Y → X and a Lagrangian density L, which yields the Euler–Lagrange differential operator acting on sections of Y → X. In classical mechanics, many dynamical systems are Lagrangian systems. The configuration space of such a Lagrangian system is a fiber bundle Q → R over the time axis R. In particular, Q = R × M if a reference frame is fixed. In classical field theory, all field systems are the Lagrangian ones.
Pointed spaceIn mathematics, a pointed space or based space is a topological space with a distinguished point, the basepoint. The distinguished point is just simply one particular point, picked out from the space, and given a name, such as that remains unchanged during subsequent discussion, and is kept track of during all operations. Maps of pointed spaces (based maps) are continuous maps preserving basepoints, i.e.
DendrimerDendrimers are highly ordered, branched polymeric molecules. Synonymous terms for dendrimer include arborols and cascade molecules. Typically, dendrimers are symmetric about the core, and often adopt a spherical three-dimensional morphology. The word dendron is also encountered frequently. A dendron usually contains a single chemically addressable group called the focal point or core. The difference between dendrons and dendrimers is illustrated in the top figure, but the terms are typically encountered interchangeably.
Loop spaceIn topology, a branch of mathematics, the loop space ΩX of a pointed topological space X is the space of (based) loops in X, i.e. continuous pointed maps from the pointed circle S1 to X, equipped with the compact-open topology. Two loops can be multiplied by concatenation. With this operation, the loop space is an A∞-space. That is, the multiplication is homotopy-coherently associative. The set of path components of ΩX, i.e. the set of based-homotopy equivalence classes of based loops in X, is a group, the fundamental group π1(X).
Structured program theoremThe structured program theorem, also called the Böhm–Jacopini theorem, is a result in programming language theory. It states that a class of control-flow graphs (historically called flowcharts in this context) can compute any computable function if it combines subprograms in only three specific ways (control structures).