Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In mathematics, and especially differential geometry and gauge theory, a connection is a device that defines a notion of parallel transport on the bundle; that is, a way to "connect" or identify fibers over nearby points. A principal G-connection on a principal G-bundle P over a smooth manifold M is a particular type of connection which is compatible with the action of the group G. A principal connection can be viewed as a special case of the notion of an Ehresmann connection, and is sometimes called a principal Ehresmann connection. It gives rise to (Ehresmann) connections on any fiber bundle associated to P via the associated bundle construction. In particular, on any associated vector bundle the principal connection induces a covariant derivative, an operator that can differentiate sections of that bundle along tangent directions in the base manifold. Principal connections generalize to arbitrary principal bundles the concept of a linear connection on the frame bundle of a smooth manifold. Let be a smooth principal G-bundle over a smooth manifold . Then a principal -connection on is a differential 1-form on with values in the Lie algebra of which is -equivariant and reproduces the Lie algebra generators of the fundamental vector fields on . In other words, it is an element ω of such that where denotes right multiplication by , and is the adjoint representation on (explicitly, ); if and is the vector field on P associated to ξ by differentiating the G action on P, then (identically on ). Sometimes the term principal G-connection refers to the pair and itself is called the connection form or connection 1-form of the principal connection. Most known non-trivial computations of principal G-connections are done with homogeneous spaces because of the triviality of the (co)tangent bundle. (For example, let , be a principal G-bundle over ) This means that 1-forms on the total space are canonically isomorphic to , where is the dual lie algebra, hence G-connections are in bijection with .
Claudia Rebeca Binder Signer, Romano Tobias Wyss, Gloria Serra Coch, Maria Anna Hecher
Jean-François Molinari, Ramin Aghababaei