Publication

Large MEMS-based programmable reflective slit mask for multi-object spectroscopy fabricated using multiple wafer-level bonding

Abstract

Multi-object spectroscopy (MOS) allows measuring infrared spectra of faint astronomical objects that provides information on the evolution of the Universe. MOS requires a slit mask for object selection at the focal plane of the telescope. We are developing MEMS-based programmable reflective slit masks composed of 2048 individually addressable micromirrors. Each micromirror measures 100 x 200 mu m(2) and is electrostatically tilted by a precise angle of at least 20 degrees. The main requirements for these arrays are precise and uniform tilt angle over the whole device, uniformity of the mirror electromechanical behavior, a flat mirror deformation and individual addressing capability of each mirror. This capability of our array is achieved using a line-column algorithm based on an optimized tilt angle/voltage hysteresis of the electrostatic actuator.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.