Publication

Online Learning of Varying Stiffness Through Physical Human-Robot Interaction

Abstract

Programming by Demonstration offers an intu- itive framework for teaching robots how to perform various tasks without having to preprogram them. It also offers an intuitive way to provide corrections and refine teaching during task execution. Previously, mostly position constraints have been taken into account when teaching tasks from demonstrations. In this work, we tackle the problem of teaching tasks that require or can benefit from varying stiffness. This extension is not trivial, as the teacher needs to have a way of communicating to the robot what stiffness it should use. We propose a method by which the teacher can modulate the stiffness of the robot in any direction through physical interaction. The system is incremental and works online, so that the teacher can instantly feel how the robot learns from the interaction. We validate the proposed approach on two experiments on a 7-Dof Barrett WAM arm.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.