**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# THE CORONA THEOREM FOR THE DRURY-ARVESON HARDY SPACE AND OTHER HOLOMORPHIC BESOV-SOBOLEV SPACES ON THE UNIT BALL IN C-n

2011

Journal paper

Journal paper

Abstract

We prove that the multiplier algebra of the Drury-Arveson Hardy space H-n(2) on the unit ball in C-n has no corona in its maximal ideal space, thus generalizing the corona theorem of L. Carleson to higher dimensions. This result is obtained as a corollary of the Toeplitz corona theorem and a new Banach space result: the Besov-Sobolev space B-p(sigma) has the "baby corona property" for all sigma >= 0 and 1 < p < infinity. In addition we obtain infinite generator and semi-infinite matrix versions of these theorems.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (8)

Dimension

In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coordinate is needed to specify a point on it - for example, the point at 5 on a number line. A surface, such as the boundary of a cylinder or sphere, has a dimension of two (2D) because two coordinates are needed to specify a point on it - for example, both a latitude and longitude are required to locate a point on the surface of a sphere.

Banach space

In mathematics, more specifically in functional analysis, a Banach space (pronounced ˈbanax) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space. Banach spaces are named after the Polish mathematician Stefan Banach, who introduced this concept and studied it systematically in 1920–1922 along with Hans Hahn and Eduard Helly.

Sobolev space

In mathematics, a Sobolev space is a vector space of functions equipped with a norm that is a combination of Lp-norms of the function together with its derivatives up to a given order. The derivatives are understood in a suitable weak sense to make the space complete, i.e. a Banach space. Intuitively, a Sobolev space is a space of functions possessing sufficiently many derivatives for some application domain, such as partial differential equations, and equipped with a norm that measures both the size and regularity of a function.