**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Banach space

Summary

In mathematics, more specifically in functional analysis, a Banach space (pronounced ˈbanax) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.
Banach spaces are named after the Polish mathematician Stefan Banach, who introduced this concept and studied it systematically in 1920–1922 along with Hans Hahn and Eduard Helly.
Maurice René Fréchet was the first to use the term "Banach space" and Banach in turn then coined the term "Fréchet space".
Banach spaces originally grew out of the study of function spaces by Hilbert, Fréchet, and Riesz earlier in the century. Banach spaces play a central role in functional analysis. In other areas of analysis, the spaces under study are often Banach spaces.
Definition
A Banach space is a complete nor

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related publications (27)

Loading

Loading

Loading

Related people (2)

Related courses (43)

MATH-502: Distribution and interpolation spaces

The aim of this course is to provide a solid foundation of theory of distributions, Sobolev spaces and an introduction to the more general theory of interpolation spaces.

MATH-302: Functional analysis I

Concepts de base de l'analyse fonctionnelle linéaire: opérateurs bornés, opérateurs compacts, théorie spectrale pour les opérateurs symétriques et compacts, le théorème de Hahn-Banach, les théorèmes de l'application ouverte et du graphe fermé.

MATH-305: Introduction to partial differential equations

This is an introductory course on Elliptic Partial Differential Equations. The course will cover the theory of both classical and generalized (weak) solutions of elliptic PDEs.

Related concepts (134)

Hilbert space

In mathematics, Hilbert spaces (named after David Hilbert) allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be

Topological vector space

In mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis.
A topol

Functional analysis

Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (for example, inner product, nor

Related units (1)

Related lectures (115)

We prove that the multiplier algebra of the Drury-Arveson Hardy space H-n(2) on the unit ball in C-n has no corona in its maximal ideal space, thus generalizing the corona theorem of L. Carleson to higher dimensions. This result is obtained as a corollary of the Toeplitz corona theorem and a new Banach space result: the Besov-Sobolev space B-p(sigma) has the "baby corona property" for all sigma >= 0 and 1 < p < infinity. In addition we obtain infinite generator and semi-infinite matrix versions of these theorems.

2011Modifying the moduli of supporting convexity and supporting smoothness, we introduce new moduli for Banach spaces which occur, for example, as lengths of catheti of right-angled triangles (defined via so-called quasiorthogonality). These triangles have two boundary points of the unit ball of a Banach space as endpoints of their hypotenuse, and their third vertex lies in a supporting hyperplane of one of the two other vertices. Among other things, it is our goal to quantify via such triangles the local deviation of the unit sphere from its supporting hyperplanes. We prove respective Day-Nordlander-type results involving generalizations of the modulus of convexity and the modulus of Banas.

We study the properties of the normal cone to a proximally smooth set. We give a complete characterization of a proximally smooth set through the monotonicity properties of its normal cone in an arbitrary uniformly convex and uniformly smooth Banach space. We also give the exact bounds for the right-hand side in the monotonicity inequality for the normal cone in terms of the moduli of smoothness and convexity of a Banach space.