Publication

Texture vs morphology in ZnO nano-rods: On the x-ray diffraction characterization of electrochemically grown samples

2011
Journal paper
Abstract

Texture characterization in thin films from standard powder x-ray diffraction (XRD) rely on the comparison between observed peak relative intensities with those of powder diffraction standards of the same compound, trough the so-called texture coefficient (TC). While these methods apply for polycrystalline materials with isotropic grains, they are less accurate-and even wrong-for anisotropic materials like ZnO oriented single-crystal nano-rods, which would require the use of dedicated XRD texture setups. By using simple geometrical considerations, we succeed in discriminating between texture and morphology contributions to the observed intensity ratios in powder diffraction patterns. On this basis, we developed a method that provides a quantitative determination of both texture (polar distribution) and morphology (aspect ratio of nano-rods), using simple x-ray powder diffraction. The method is illustrated on a typical sample from a series of Zinc oxide (ZnO) nano-rod arrays grown onto a gold thin film sputtered onto a F:SnO2-coated glass substrate (FTO) by using cathodic electro-deposition. In order to check the consistency of our method, we confronted our findings with scanning electron microscope (SEM) images, grazing incidence diffraction (GID), and XRD pole-figures of the same sample. Nevertheless, the proposed method is self-consistent and only requires the use of a standard powder diffractometer, nowadays available in most solid-state laboratories. (C) 2011 American Institute of Physics. [doi:10.1063/1.3669026]

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.