Linear and nonlinear susceptibilities from diffusion quantum Monte Carlo: Application to periodic hydrogen chains
Related publications (37)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Computational chemistry aims to simulate reactions and molecular properties at the atomic scale, advancing the design of novel compounds and materials with economic, environmental, and societal implications. However, the field relies on approximate quantum ...
One of the fundamental properties of semiconductors is their ability to support highly tunable electric currents in the presence of electric fields or carrier concentration gradients. These properties are described by transport coefficients such as electro ...
Cooperativity is key in defining the shape (i.e., gradual, abrupt, or hysteretic) of thermally driven spin transitions in magnetic switches. Despite its importance, there is very little information on its atomistic origin, which hinders the rational design ...
Combining experimental and ab initio core-level photoelectron spectroscopy (periodic DFT and quantum chemistry calculations), we elucidated how ammonia molecules bond to the hydroxyls of the (H,OH)-Si(001) model surface at a temperature of 130 K. Indeed, t ...
Implicit summation is a technique for the conversion of sums over intermediate states in multiphoton absorption and the high-order susceptibility in hydrogen into simple integrals. Here, we derive the equivalent technique for hydrogenic impurities in multi ...
The fast and reliable determination of wave functions and electron densities of macromolecules has been one of the goals of theoretical chemistry for a long time, and in this context, several linear scaling techniques have been successfully devised over th ...
We develop a path-integral dynamics method for water that resembles centroid molecular dynamics (CMD), except that the centroids are averages of curvilinear, rather than Cartesian, bead coordinates. The curvilinear coordinates are used explicitly only when ...
Second-order Moller-Plesset perturbation theory (MP2) is the most expedient wave function-based method for considering electron correlation in quantum chemical calculations and, as such, provides a cost-effective framework to assess the effects of basis se ...
The field of quantum chemistry has recently undergone a series of paradigm shifts, including a boom in machine learning applications that target the electronic structure problem. Along with these technological innovations, the community continues to identi ...
The photophysical dynamics of 2-aminopurine riboside (2APr) in CHCl3 have been studied following excitation at (pump) = 310 nm by means of femtosecond transient vibrational absorption spectroscopy (TVAS) aided by quantum chemical density functional theory ...