Publication

Searches for Majorana neutrinos in B- decays

Abstract

Searches for heavy Majorana neutrinos in B- decays in final states containing hadrons plus a mu(-) mu(-) pair have been performed using 0.41 fb(-1) of data collected with the LHCb detector in proton-proton collisions at a center-of-mass energy of 7 TeV. The D+ mu(-) mu(-) and D*+ mu(-) mu(-) final states can arise from the presence of virtual Majorana neutrinos of any mass. Other final states containing pi(+), D-s(+), or D-0 pi(+) can be mediated by an on-shell Majorana neutrino. No signals are found and upper limits are set on Majorana neutrino production as a function of mass, and also on the B- decay branching fractions.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Sterile neutrino
Sterile neutrinos (or inert neutrinos) are hypothetical particles (neutral leptons – neutrinos) that are believed to interact only via gravity and not via any of the other fundamental interactions of the Standard Model. The term sterile neutrino is used to distinguish them from the known, ordinary active neutrinos in the Standard Model, which carry an isospin charge of ± 1/ 2 and engage in the weak interaction. The term typically refers to neutrinos with right-handed chirality (see right-handed neutrino), which may be inserted into the Standard Model.
Majorana fermion
A Majorana fermion (maɪə'rɑːnə), also referred to as a Majorana particle, is a fermion that is its own antiparticle. They were hypothesised by Ettore Majorana in 1937. The term is sometimes used in opposition to a Dirac fermion, which describes fermions that are not their own antiparticles. With the exception of neutrinos, all of the Standard Model fermions are known to behave as Dirac fermions at low energy (lower than the electroweak symmetry breaking temperature), and none are Majorana fermions.
Neutrino
A neutrino (njuːˈtriːnoʊ ; denoted by the Greek letter ν) is a fermion (an elementary particle with spin of 1 /2) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small (-ino) that it was long thought to be zero. The rest mass of the neutrino is much smaller than that of the other known elementary particles excluding massless particles.
Show more
Related publications (34)

Search for the lepton flavour violating decays B0 -> emu and B0s -> emu with LHCb Run 2 data

Sebastian Schulte

A large variety of new physics models suggest that the rates for lepton flavour violating bb-hadron decays may be much higher than predicted in the Standard Model, which leads to a high interest in the search for such decays. This thesis presents the sear ...
EPFL2024

Search for direct pair production of supersymmetric partners of τ leptons in the final state with two hadronically decaying τ leptons and missing transverse momentum in proton-proton collisions at √s=13 TeV

MeV-scale seesaw and leptogenesis

Marco Drewes, Valerie Fiona Domcke, Michele Lucente

We study the type-I seesaw model with three right-handed neutrinos and Majorana masses below the pion mass. In this mass range, the model parameter space is not only strongly constrained by the requirement to explain the light neutrino masses, but also by ...
SPRINGER2021
Show more
Related MOOCs (1)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.