Learning to play minigolf: A dynamical system-based approach
Related publications (41)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Despite tremendous advances in robotics, we are still amazed by the proficiency with which humans perform movements. Even new waves of robotic systems still rely heavily on hardcoded motions with a limited ability to react autonomously and robustly to a dy ...
In research of human-robot interactions, human likeness (HL) of robots is frequently used as an individual, vague parameter to describe how a robot is perceived by a human. However, such a simplification of HL is often not sufficient given the complexity a ...
Reaching over to grasp an item is arguably the most commonly used motor skill by humans. Even under sudden perturbations, humans seem to react rapidly and adapt their motion to guarantee success. Despite the apparent ease and frequency with which we use th ...
Dynamical Systems (DS) for robot motion modeling are a promising approach for efficient robot learning and control. Our focus in this paper is on autonomous dynamical systems, which represent a motion plan without dependency on time. We develop a method th ...
We present the IniRobot pedagogical kit, conceived and deployed within French and Swiss primary schools for the initiation to robotics and computer science. It provides a microworld for learning, and takes an enquiry-based educational approach, where kids ...
We consider an imitation learning approach to model robot point-to-point (also known as discrete or reaching) movements with a set of autonomous Dynamical Systems (DS). Each DS model codes a behavior (such as reaching for a cup and swinging a golf club) at ...
Transferring skills from a biological organism to a hyper-redundant system is a challenging task, especially when the two agents have very different structure/embodiment and evolve in different environments. In this article we propose to address this probl ...
Real time planning strategy is crucial for robots working in dynamic environments. In particular, robot grasping tasks require quick reactions in many applications such as human-robot interaction. In this paper, we propose an approach for grasp learning th ...
In this literature review we explain anthropomorphism and its role in the design of socially interactive robots and human-robot interaction. We illus-trate the social phenomenon of anthropomorphism which describes people’s tendency to attribute lifelike qu ...
Mechanical figures that mimic human motions continue to entertain us and capture our imagination. Creating such automata requires expertise in motion planning, knowledge of mechanism design, and familiarity with fabrication constraints. Thus, automaton des ...