Relatively compact subspaceIn mathematics, a relatively compact subspace (or relatively compact subset, or precompact subset) Y of a topological space X is a subset whose closure is compact. Every subset of a compact topological space is relatively compact (since a closed subset of a compact space is compact). And in an arbitrary topological space every subset of a relatively compact set is relatively compact. Every compact subset of a Hausdorff space is relatively compact.
Geodetic coordinatesGeodetic coordinates are a type of curvilinear orthogonal coordinate system used in geodesy based on a reference ellipsoid. They include geodetic latitude (north/south) φ, longitude (east/west) λ, and ellipsoidal height h (also known as geodetic height). The triad is also known as Earth ellipsoidal coordinates (not to be confused with ellipsoidal-harmonic coordinates). Longitude measures the rotational angle between the zero meridian and the measured point. By convention for the Earth, Moon and Sun, it is expressed in degrees ranging from −180° to +180°.
LatitudeIn geography, latitude is a coordinate that specifies the north–south position of a point on the surface of the Earth or another celestial body. Latitude is given as an angle that ranges from –90° at the south pole to 90° at the north pole, with 0° at the Equator. Lines of constant latitude, or parallels, run east–west as circles parallel to the equator. Latitude and longitude are used together as a coordinate pair to specify a location on the surface of the Earth.
Countably compact spaceIn mathematics a topological space is called countably compact if every countable open cover has a finite subcover. A topological space X is called countably compact if it satisfies any of the following equivalent conditions: (1) Every countable open cover of X has a finite subcover. (2) Every infinite set A in X has an ω-accumulation point in X. (3) Every sequence in X has an accumulation point in X. (4) Every countable family of closed subsets of X with an empty intersection has a finite subfamily with an empty intersection.
Semidefinite programmingSemidefinite programming (SDP) is a subfield of convex optimization concerned with the optimization of a linear objective function (a user-specified function that the user wants to minimize or maximize) over the intersection of the cone of positive semidefinite matrices with an affine space, i.e., a spectrahedron. Semidefinite programming is a relatively new field of optimization which is of growing interest for several reasons. Many practical problems in operations research and combinatorial optimization can be modeled or approximated as semidefinite programming problems.
FormulationFormulation is a term used in various senses in various applications, both the material and the abstract or formal. Its fundamental meaning is the putting together of components in appropriate relationships or structures, according to a formula. Etymologically formula is the diminutive of the Latin forma, meaning shape. In that sense a formulation is created according to the standard for the product. Disciplines in which one might use the word formulation in the abstract sense include logic, mathematics, linguistics, legal theory, and computer science.
Graph isomorphism problemThe graph isomorphism problem is the computational problem of determining whether two finite graphs are isomorphic. The problem is not known to be solvable in polynomial time nor to be NP-complete, and therefore may be in the computational complexity class NP-intermediate. It is known that the graph isomorphism problem is in the low hierarchy of class NP, which implies that it is not NP-complete unless the polynomial time hierarchy collapses to its second level.
Brain sizeThe 'size of the brain' is a frequent topic of study within the fields of anatomy, biological anthropology, animal science and evolution. Brain size is sometimes measured by weight and sometimes by volume (via MRI scans or by skull volume). Neuroimaging intelligence testing can be used to study the volumetric measurements of the brain. Regarding "intelligence testing", a question that has been frequently investigated is the relation of brain size to intelligence.
Stable model semanticsThe concept of a stable model, or answer set, is used to define a declarative semantics for logic programs with negation as failure. This is one of several standard approaches to the meaning of negation in logic programming, along with program completion and the well-founded semantics. The stable model semantics is the basis of answer set programming.
Answer set programmingAnswer set programming (ASP) is a form of declarative programming oriented towards difficult (primarily NP-hard) search problems. It is based on the stable model (answer set) semantics of logic programming. In ASP, search problems are reduced to computing stable models, and answer set solvers—programs for generating stable models—are used to perform search. The computational process employed in the design of many answer set solvers is an enhancement of the DPLL algorithm and, in principle, it always terminates (unlike Prolog query evaluation, which may lead to an infinite loop).