Explicit methods for stiff stochastic differential equations
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The Internodes method is a general purpose method to deal with non-conforming discretizations of partial differential equations on 2D and 3D regions partitioned into disjoint subdomains. In this paper we are interested in measuring how much the Internodes ...
In this work, we present a PDE-aware deep learning model for the numerical solution to the inverse problem of electrocardiography. The model both leverages data availability and exploits the knowledge of a physically based mathematical model, expressed by ...
Isogeometric analysis (IGA) was introduced to integrate methods for analysis and computer-aided design (CAD) into a unified process. High-quality parameterization of a physical domain plays a crucial role in IGA. However, obtaining high-quality parameteriz ...
We present TimeEvolver, a program for computing time evolution in a generic quantum system. It relies on well-known Krylov subspace techniques to tackle the problem of multiplying the exponential of a large sparse matrix iH, where His the Hamiltonian, with ...
We consider a least-squares/relaxation finite element method for the numerical solution of the prescribed Jacobian equation. We look for its solution via a least-squares approach. We introduce a relaxation algorithm that decouples this least-squares proble ...
Stabilized Runge???Kutta methods are especially efficient for the numerical solution of large systems of stiff nonlinear differential equations because they are fully explicit. For semi-discrete parabolic problems, for instance, stabilized Runge???Kutta me ...
This paper presents a novel method for solving partial differential equations on three-dimensional CAD geometries by means of immersed isogeometric discretizations that do not require quadrature schemes. It relies on a newly developed technique for the eva ...
Stabilized explicit methods are particularly efficient, for large systems of stiff stochastic differential equations (SDEs) due to their extended stability domain. However, they lose their efficiency when a severe stiffness is induced by very few "fast" de ...
Small-scale turbomachinery is increasingly used in carbon-free energy conversion systems, such as commercial or domestic scale heat pumps, fuels cells for transportation and waste heat recovery. The usage of aerodynamic bearings allows the design of compac ...
The parallel Schwarz method (PSM) is an overlapping domain decomposition (DD) method to solve partial differential equations (PDEs). Similarly to classical nonoverlapping DD methods, the PSM admits a substructured formulation, that is, it can be formulated ...