Publication

Label-free imaging of cerebral β-amyloidosis with extended-focus optical coherence microscopy

Abstract

We demonstrate label-free imaging of cerebral β-amyloidosis ex vivo and in a living mouse model of Alzheimer's disease using extended focus Fourier domain optical coherence microscopy (xfOCM). xfOCM provides 3D, high-resolution images of individual β-amyloid plaques in the brain parenchyma and vasculature and requires no staining of the Alzheimeric sample under investigation. xfOCM also opens the possibility to perform minimally invasive studies of β-amyloid pathology in vivo, without the use of labeling methods, which potentially confound experimental findings.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.