Fully discrete analysis of the heterogeneous multiscale method for elliptic problems with multiple scales
Related publications (55)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We introduce new sufficient conditions for a numerical method to approximate with high order of accuracy the invariant measure of an ergodic system of stochastic differential equations, independently of the weak order of accuracy of the method. We then pre ...
Society for Industrial and Applied Mathematics2014
The computation of the reachable set of states of a given dynamic system is an important step to verify its safety during operation. There are different methods of computing reachable sets, namely interval integration, capture basin, methods involving the ...
The characteristic of effective properties of physical processes in heterogeneous media is a basic modeling and computational problem for many applications. As standard numerical discretization of such multiscale problems (e.g. with classical finite elemen ...
A new finite element method for the efficient discretization of elliptic homogenization problems is proposed. These problems, characterized by data varying over a wide range of scales cannot be easily solved by classical numerical methods that need mesh re ...
Among the efficient numerical methods based on atomistic models, the quasi-continuum (QC) method has attracted growing interest in recent years. The QC method was first developed for crystalline materials with Bravais lattice and was later extended to mult ...
It is important to consider the microstructure of a material when studying the macroscopic mechanical properties. Although special equipments have been used for micromechanics study through experimental tests, it is limited by instruments and reproducibili ...
This article proposes a numerical model for microfluidic two-phase flows in flat channels, also called Hele-Shaw cells. The initially three-dimensional problem is simplified to two-dimensions by depth averaging in the thin direction. The 2D partial differe ...
This paper proposes an approach for high-order time integration within a multi-domain setting for time- fractional differential equations. Since the kernel is singular or nearly singular, two main difficulties arise after the domain decomposition: how to p ...
This paper reports the result of the cooperation between KUL and EPFL on the numerical integration of Sommerfeld integrals (SI). Each institution is well-known for developing specific techniques suited for the evaluation of SI: double-exponential quadratur ...
A new method for solving numerically stochastic partial differential equations (SPDEs) with multiple scales is presented. The method combines a spectral method with the heterogeneous multiscale method (HMM) presented in [W. E, D. Liu, E. Vanden-Eijnden, An ...