Publication

Study of a class of models for self-organization: equilibrium analysis

Max-Olivier Hongler
1983
Journal paper
Abstract

A new class of nonlinear stochastic models is introduced with a view to explore self-organization. The model consists of an assembly of anharmonic oscillators, interacting via a mean field of system size range, in presence of white, Gaussian noise. Its properties are explored in the overdamped regime (Smoluchowski limit). The single oscillator potential is such that for small oscillator displacements it leads to a highly nonlinear force but becomes asymptotically harmonic. The shape of the potential can be a single-or double-well and is controlled by a set of parameters. Through equilibrium statistical mechanical analysis, we study the collective behavior and the nature of phase transition. Much of the analysis is analytic and exact. The treatment is not restricted to the thermodynamic limit so that we are also able to discuss finite size effects in the model. © 1983 Plenum Publishing Corporation.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.