Numerical pancake droplets: from capturing to versatile microfluidics
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
A new finite element method for the efficient discretization of elliptic homogenization problems is proposed. These problems, characterized by data varying over a wide range of scales cannot be easily solved by classical numerical methods that need mesh re ...
The aim of this work is the development of a geometrical multiscale framework for the simulation of the human cardiovascular system under either physiological or pathological conditions. More precisely, we devise numerical algorithms for the partitioned so ...
We consider elliptic PDEs (partial differential equations) in the framework of isogeometric analysis, i.e., we treat the physical domain by means of a B-spline or NURBS mapping which we assume to be regular. The numerical solution of the PDE is computed by ...
A new method for solving numerically stochastic partial differential equations (SPDEs) with multiple scales is presented. The method combines a spectral method with the heterogeneous multiscale method (HMM) presented in [W. E, D. Liu, E. Vanden-Eijnden, An ...
A Flux-Coordinate Independent (FCI) approach for anisotropic systems, not based on magnetic flux coordinates, has been introduced in Hariri and Ottaviani [Comput. Phys. Commun. 184, 2419 (2013)]. In this paper, we show that the approach can tackle magnetic ...
A fully discrete analysis of the finite element heterogeneous multiscale method for a class of nonlinear elliptic homogenization problems of nonmonotone type is proposed. In contrast to previous results obtained for such problems in dimension d≤2 for ...
We simulate confined droplets in microchannels by depth-averaged equations solved by a boundary element method. The retarding effect due to film formation is absent in the depth-averaged approach and added by a nonlinear boundary condition. Although deform ...
We introduce a new convex formulation for stable principal component pursuit (SPCP) to decompose noisy signals into low-rank and sparse representations. For numerical solutions of our SPCP formulation, we first develop a convex variational framework and th ...
We revisit the classic problem of an elastic solid with a two-dimensional wavy surface squeezed against an elastic flat half-space from infinitesimal to full contact. Through extensive numerical calculations and analytic derivations, we discover previously ...
Timber Fabric structures (TFS) initiate from a correspondence between textile principles and recent industrial developments in producing cross laminated timber panels. Several individual timber strips are interlaced according to a pattern and result in an ...