The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability
Related publications (272)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Fast neurotransmitter release is essential for neuron-neuron communication and is initiated by the opening of voltage-gated Ca2+ channels close to docked vesicles at the presynaptic active zone. The high concentration of Ca2+ channels at the active zone is ...
In the brainstem auditory circuit of mammals and birds, excitatory synapses with extraordinarily large size have evolved, which ensure fast membrane potential signaling mediated by large, multiquantal excitatory postsynaptic currents (EPSCs). The so-called ...
Cortical neurons receive balanced excitatory and inhibitory synaptic currents. Such a balance could be established and maintained in an experience-dependent manner by synaptic plasticity at inhibitory synapses. We show that this mechanism provides an expla ...
A key issue in the realization of retinal prosthetic devices is reliable transduction of information carried by light into specific patterns of electrical activity in visual information processing networks. Soft organic materials can be used to couple arti ...
Transmitter release at synapses is driven by elevated intracellular Ca2+ concentration (Ca2+) near the sites of vesicle fusion. Ca2+ signals of profoundly different amplitude and kinetics drive the phasic release component during a presynaptic ac ...
Sensory information is actively gathered by animals, but the synaptic mechanisms driving neuronal circuit function during active sensory processing are poorly understood. Here, we investigated the synaptically driven membrane potential dynamics during acti ...
We study the role of network architecture in the formation of synchronous clusters in synaptically coupled networks of bursting neurons. We give a simple combinatorial algorithm that finds the largest synchronous clusters from the network topology. We demo ...
In the vertebrate CNS, fast synaptic inhibition is mediated by GABA and glycine receptors. We recently reported that the time course of these synaptic currents is slower when intracellular chloride is high. Here we extend these findings to measure the effe ...
Despite a wealth of in vitro and modelling studies it remains unclear how neuronal populations in the cerebellum interact in vivo. We address the issue of how the cerebellar input layer processes sensory information, with particular focus on the granule ce ...
At presynaptic active zones, neurotransmitter release is initiated by the opening of voltage-gated Ca²+ channels close to docked vesicles. The mechanisms that enrich Ca²+ channels at active zones are, however, largely unknown, possibly because of the limit ...