Publication

HYPER-FLEXIBLE 1-D SHAPE SENSOR

Abstract

Here we describe a sensor capable of perceiving complex one-dimensional (1-D) shape of an underlying substrate in a static and dynamic manner. The sensor consists of seven, serially connected, hyper-flexible strain gauges, manufactured using stretchable-gold-conductordeposited-on-PDMS technology. The custom designed read-out scheme allows decoupling strain-sensitive resistances of the strain-gauges from the parasitic pressure- and temperature-sensitive resistances of the connectors. The developed prototype device confirms full operation within the tested deflections ranging from 0 o to 35 o, showing an average sensitivity of 36 !/o and an average resolution of 0.22 o. The read-out frequency of 100 Hz allows quick scanning of the whole sensor array.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (25)
Active-pixel sensor
An active-pixel sensor (APS) is an , which was invented by Peter J.W. Noble in 1968, where each pixel sensor unit cell has a photodetector (typically a pinned photodiode) and one or more active transistors. In a metal–oxide–semiconductor (MOS) active-pixel sensor, MOS field-effect transistors (MOSFETs) are used as amplifiers. There are different types of APS, including the early NMOS APS and the now much more common complementary MOS (CMOS) APS, also known as the CMOS sensor.
Image sensor
An image sensor or imager is a sensor that detects and conveys information used to form an . It does so by converting the variable attenuation of light waves (as they pass through or reflect off objects) into signals, small bursts of current that convey the information. The waves can be light or other electromagnetic radiation. Image sensors are used in electronic imaging devices of both analog and digital types, which include digital cameras, camera modules, camera phones, optical mouse devices, medical imaging equipment, night vision equipment such as thermal imaging devices, radar, sonar, and others.
Sensor node
A sensor node (also known as a mote in North America), consists of an individual node from a sensor network that is capable of performing a desired action such as gathering, processing or communicating information with other connected nodes in a network. Although wireless sensor networks have existed for decades and used for diverse applications such as earthquake measurements or warfare, the modern development of small sensor nodes dates back to the 1998 Smartdust project and the NASA.
Show more
Related publications (32)

Morphological and Material Programability of a Hall-Effect Based Soft Tactile Sensors

Josephine Anna Eleanor Hughes, Sudong Lee

The different receptors in human skin show not only diversity in the stimuli to which they respond, but also variable sensitivity and directionality. This is often determined by their location or morphology, and can play an important role in filtering or a ...
IEEE2024

Large-Format Time-Gated SPAD Cameras for Real-Time Phasor-Based FLIM

Arin Can Ülkü

Fluorescence lifetime imaging microscopy (FLIM) is an imaging modality often used to monitor biochemical properties of a cell or a tissue. In addition to conventional fluorescence microscopy features, such as selective labeling and non-invasiveness, FLIM e ...
EPFL2021

A Pixel Design of a Branching Ultra-Highspeed Image Sensor

Edoardo Charbon

A burst image sensor named Hanabi, meaning fireworks in Japanese, includes a branching CCD and multiple CMOS readout circuits. The sensor is backside-illuminated with a light/charge guide pipe to minimize the temporal resolution by suppressing the horizont ...
2021
Show more
Related MOOCs (9)
Digital Signal Processing [retired]
The course provides a comprehensive overview of digital signal processing theory, covering discrete time, Fourier analysis, filter design, sampling, interpolation and quantization; it also includes a
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.