**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Publication# Robust parameter estimation for the Ornstein-Uhlenbeck process

Résumé

In this paper, we derive elementary M- and optimally robust asymptotic linear (AL)-estimates for the parameters of an Ornstein-Uhlenbeck process. Simulation and estimation of the process are already well-studied, see Iacus (Simulation and inference for stochastic differential equations. Springer, New York, 2008). However, in order to protect against outliers and deviations from the ideal law the formulation of suitable neighborhood models and a corresponding robustification of the estimators are necessary. As a measure of robustness, we consider the maximum asymptotic mean square error (maxasyMSE), which is determined by the influence curve (IC) of AL estimates. The IC represents the standardized influence of an individual observation on the estimator given the past. In a first step, we extend the method of M-estimation from Huber (Robust statistics. Wiley, New York, 1981). In a second step, we apply the general theory based on local asymptotic normality, AL estimates, and shrinking neighborhoods due to Kohl et al. (Stat Methods Appl 19:333-354, 2010), Rieder (Robust asymptotic statistics. Springer, New York, 1994), Rieder (2003), and Staab (1984). This leads to optimally robust ICs whose graph exhibits surprising behavior. In the end, we discuss the estimator construction, i.e. the problem of constructing an estimator from the family of optimal ICs. Therefore we carry out in our context the One-Step construction dating back to LeCam (Asymptotic methods in statistical decision theory. Springer, New York, 1969) and compare it by means of simulations with MLE and M-estimator.

Official source

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés

Chargement

Publications associées

Chargement

Publications associées (35)

Concepts associés (28)

Estimateur (statistique)

En statistique, un estimateur est une fonction permettant d'estimer un moment d'une loi de probabilité (comme son espérance ou sa variance). Il peut par exemple servir à estimer certaines caractérist

Robustesse (statistiques)

En statistiques, la robustesse d'un estimateur est sa capacité à ne pas être perturbé par une modification dans une petite partie des données ou dans les paramètres du modèle choisi pour l'estimati

Erreur quadratique moyenne

En statistiques, l’erreur quadratique moyenne d’un estimateur \hat\theta d’un paramètre \theta de dimension 1 (mean squared error (\operatorname{MSE}), en angl

Chargement

Chargement

Chargement

Powerful mathematical tools have been developed for trading in stocks and bonds, but other markets that are equally important for the globalized world have to some extent been neglected. We decided to study the shipping market as an new area of development in mathematical finance. The market in shipping derivatives (FFA and FOSVA) has only been developed after 2000 and now exhibits impressive growth. Financial actors have entered the field, but it is still largely undiscovered by institutional investors. The first part of the work was to identify the characteristics of the market in shipping, i.e. the segmentation and the volatility. Because the shipping business is old-fashioned, even the leading actors on the world stage (ship owners and banks) are using macro-economic models to forecast the rates. If the macro-economic models are logical and make sense, they fail to predict. For example, the factor port congestion has been much cited during the last few years, but it is clearly very difficult to control and is simply an indicator of traffic. From our own experience it appears that most ship owners are in fact market driven and rather bad at anticipating trends. Due to their ability to capture large moves, we chose to consider Lévy processes for the underlying price process. Compared with the macro-economic approach, the main advantage is the uniform and systematic structure this imposed on the models. We get in each case a favorable result for our technology and a gain in forecasting accuracy of around 10% depending on the maturity. The global distribution is more effectively modelled and the tails of the distribution are particularly well represented. This model can be used to forecast the market but also to evaluate the risk, for example, by computing the VaR. An important limitation is the non-robustness in the estimation of the Lévy processes. The use of robust estimators reinforces the information obtained from the observed data. Because maximum likelihood estimation is not easy to compute with complex processes, we only consider some very general robust score functions to manage the technical problems. Two new class of robust estimators are suggested. These are based on the work of F. Hampel ([29]) and P. Huber ([30]) using influence functions. The main idea is to bound the maximum likelihood score function. By doing this a bias is created in the parameters estimation, which can be corrected by using a modification of the following type and as proposed by F. Hampel. The procedure for finding a robust estimating equation is thus decomposed into two consecutive steps : Subtract the bias correction and then Bound the score function. In the case of complex Lévy processes, the bias correction is difficult to compute and generally unknown. We have developed a pragmatic solution by inverting the Hampel's procedure. Bound the score function and then Correct for the bias. The price is a loss of the theoretical properties of our estimators, besides the procedure converges to maximum likelihood estimate. A second solution to for achieving robust estimation is presented. It considers the limiting case when the upper and lower bounds tend to zero and leads to B-robust estimators. Because of the complexity of the Lévy distributions, this leads to identification problems.

In this thesis, we treat robust estimation for the parameters of the Ornstein–Uhlenbeck process, which are the mean, the variance, and the friction. We start by considering classical maximum likelihood estimation. For the simulation study, where we also investigate the choice of the time lag, we use the method of moment (MoM) estimator as initial estimator for the friction parameter of the maximum likelihood estimator (MLE). However, in several aspects the MLE is not robust. For robustification, we first derive elementary M-estimates by extending the method of M-estimation from Huber (1981). We use an intuitively robustified MoM estimate as initial estimate and compare by means of simulation the M-estimate with the MLE. This approach is, however, only ad-hoc since Huber’s minimum Fisher information and minimax asymptotic variance theory remains incomplete for simultaneous location and scale, and does not cover more general models (as for example the Ornstein–Uhlenbeck process). A more general robustness concept due to Kohl et al. (2010), Rieder (1994), and Staab (1984) is based on local asymptotic normality (LAN), asymptotically linear (AL) estimates, and shrinking neighborhoods. We then apply this concept to the Ornstein–Uhlenbeck process. As a measure of robustness, we consider the maximum asymptotic mean square error (maxasyMSE), which is determined by the influence curve (IC) of AL estimates. The IC represents the standardized influence of an individual observation on the estimator given the past. For two kind of neighborhoods (average and average square neighborhoods) we obtain optimally robust ICs. In case of average neighborhoods, their graph exhibits surprising, redescending behavior. For average square neighborhoods the graph is between the one of the elementary M-estimates and the MLE. Finally, we discuss the estimator construction, that is, the problem of constructing an estimator from the family of optimal ICs. We carry out in our context the One-Step construction dating back to LeCam and use both an intuitively robustified MoM estimate and the elementary M-estimate as initial estimate. This results in optimally AL estimates (for average and average square neighborhoods). By means of simulation we then compare the different estimators: MLE, elementary M-estimates, and optimally AL estimates. In addition, we give an application to electricity prices.

This work is concerned with the estimation of the spreading potential of the disease in the initial stages of an epidemic. A speedy and accurate estimation is important for determining whether or not interventions are necessary to prevent a major outbreak. At the same time, the information available in the early stages is scarce and data collection imperfect. We consider an epidemic in a large susceptible population, and address the estimation based on temporally aggregated counts of new cases that are subject to unknown random under-reporting. We allow for an influence of the detection process on the evolution of the epidemic. While the proportion of infectious individuals in the population is small, the role of chance in the spread of the disease may be substantial. Therefore, stochastic epidemic models are applied. As these are difficult to analyse, the time evolution of the number of infectious individuals is approximated by branching processes. We study the estimation in a partially observed Galton–Watson process and in a partially observed linear birth and death process; and in each case focus on the parameter characterising the growth of the process. We aim at estimators that perform well in the asymptotic sense where a single trajectory is observed over a long period of time, and study the asymptotics conditionally on the eventual explosion of the process. The partially observed Galton–Watson process has been recently proposed in the literature as a model for the initial stages of an epidemic. Its probabilistic structure has been explored and estimation has been partially addressed, in that consistent estimators have been constructed. However, the estimation-related uncertainty has not been evaluated. We address this issue here by constructing estimators that are motivated from the asymptotic dependence structure of the process. We show that they are consistent and asymptotically normal, consistently estimate their asymptotic variances, and construct asymptotic confidence intervals. In addition, we evaluate their finite-sample performance in a simulation study and their practical performance on real data. The observation mechanism in the partially observed Galton–Watson process is inherently discrete. To allow for continuous-time dynamics, we incorporate partial observation in the linear birth and death process. In particular, we propose a model where the birth process is completely unobserved, while a random proportion of the death process is observed at discrete time points. We study the estimation in this model. Motivated by its counting process structure, we arrive at consistent and asymptotically normal estimators, consistently estimate their asymptotic variances, and construct asymptotic confidence intervals. We also evaluate the finite-sample and practical performance of the estimators in a simulation study and on real data.