Some algebro-geometric solutions for the coupled modified Kadomtsev-Petviashvili equations arising from the Neumann type systems
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Driven by the demand for real-time processing and the need to minimize latency in AI algorithms, edge computing has experienced remarkable progress. Decision-making AI applications stand out for their heavy reliance on data-centric operations, predominantl ...
Classical Serre-Tate theory describes deformations of ordinary abelian varieties. It implies that every such variety has a canonical lift to characteristic zero and equips the base of its universal deformation with a Frobenius lifting and canonical multipl ...
We study the energy distribution of harmonic 1-forms on a compact hyperbolic Riemann surface S where a short closed geodesic is pinched. If the geodesic separates the surface into two parts, then the Jacobian variety of S develops into a variety that split ...
We study the Riemann problem for multidimensional compressible isentropic Euler equations. Using the framework developed in Chiodaroli et al (2015 Commun. Pure Appl. Math. 68 1157-90), and based on the techniques of De Lellis and Szekelyhidi (2010 Arch. Ra ...
We explore a few algebraic and geometric structures, through certain questions posed by modern cryptography. We focus on the cases of discrete logarithms in finite fields of small characteristic, the structure of isogeny graphs of ordinary abelian varietie ...
In the conventional von Neumann (VN) architecture, data—both operands and operations to be performed on those operands—makes its way from memory to a dedicated central processor. With the end of Dennard scaling and the resulting slowdown in Moore’s law, th ...
Abelian varieties are fascinating objects, combining the fields of geometry and arithmetic. While the interest in abelian varieties has long time been of purely theoretic nature, they saw their first real-world application in cryptography in the mid 1980's ...
The Chow-Mumford (CM) line bundle is a functorial line bundle on the base of any family of klt Fano varieties. It is conjectured that it yields a polarization on the moduli space of K-poly-stable klt Fano varieties. Proving ampleness of the CM line bundle ...
We prove the Topological Mirror Symmetry Conjecture by Hausel-Thaddeus for smooth moduli spaces of Higgs bundles of type SLn and PGLn. More precisely, we establish an equality of stringy Hodge numbers for certain pairs of algebraic orbifolds generica ...
Let k be an algebraically closed field of characteristic p > 0. We give a birational characterization of ordinary abelian varieties over k: a smooth projective variety X is birational to an ordinary abelian variety if and only if kappa(S)(X) = 0 and b(1)(X ...