Publication

Fast Object Detection with Entropy-Driven Evaluation

Abstract

Cascade-style approaches to implementing ensemble classifiers can deliver significant speed-ups at test time. While highly effective, they remain challenging to tune and their overall performance depends on the availability of large validation sets to estimate rejection thresholds. These characteristics are often prohibitive and thus limit their applicability. We introduce an alternative approach to speeding-up classifier evaluation which overcomes these limitations. It involves maintaining a probability estimate of the class label at each intermediary response and stopping when the corresponding uncertainty becomes small enough. As a result, the evaluation terminates early based on the sequence of responses observed. Furthermore, it does so independently of the type of ensemble classifier used or the way it was trained. We show through extensive experimentation that our method provides 2 to 10 fold speed-ups, over existing state-of-the-art methods, at almost no loss in accuracy on a number of object classification tasks.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.