Component Object ModelComponent Object Model (COM) is a binary-interface standard for software components introduced by Microsoft in 1993. It is used to enable inter-process communication object creation in a large range of programming languages. COM is the basis for several other Microsoft technologies and frameworks, including OLE, OLE Automation, Browser Helper Object, ActiveX, COM+, DCOM, the Windows shell, DirectX, UMDF and Windows Runtime.
Lazy evaluationIn programming language theory, lazy evaluation, or call-by-need, is an evaluation strategy which delays the evaluation of an expression until its value is needed (non-strict evaluation) and which also avoids repeated evaluations (by the use of sharing). The benefits of lazy evaluation include: The ability to define control flow (structures) as abstractions instead of primitives. The ability to define potentially infinite data structures. This allows for more straightforward implementation of some algorithms.
Data integrationData integration involves combining data residing in different sources and providing users with a unified view of them. This process becomes significant in a variety of situations, which include both commercial (such as when two similar companies need to merge their databases) and scientific (combining research results from different bioinformatics repositories, for example) domains. Data integration appears with increasing frequency as the volume (that is, big data) and the need to share existing data explodes.
Business process modelingBusiness process modeling (BPM) in business process management and systems engineering is the activity of representing processes of an enterprise, so that the current business processes may be analyzed, improved, and automated. BPM is typically performed by business analysts, who provide expertise in the modeling discipline; by subject matter experts, who have specialized knowledge of the processes being modeled; or more commonly by a team comprising both. Alternatively, the process model can be derived directly from events' logs using process mining tools.
Function compositionIn mathematics, function composition is an operation ∘ that takes two functions f and g, and produces a function h = g ∘ f such that h(x) = g(f(x)). In this operation, the function g is applied to the result of applying the function f to x. That is, the functions f : X → Y and g : Y → Z are composed to yield a function that maps x in domain X to g(f(x)) in codomain Z. Intuitively, if z is a function of y, and y is a function of x, then z is a function of x.
Federal enterprise architectureA federal enterprise architecture framework (FEAF) is the U.S. reference enterprise architecture of a federal government. It provides a common approach for the integration of strategic, business and technology management as part of organization design and performance improvement. The most familiar federal enterprise architecture is the enterprise architecture of the Federal government of the United States, the U.S. "Federal Enterprise Architecture" (FEA) and the corresponding U.S. "Federal Enterprise Architecture Framework" (FEAF).
Fredholm operatorIn mathematics, Fredholm operators are certain operators that arise in the Fredholm theory of integral equations. They are named in honour of Erik Ivar Fredholm. By definition, a Fredholm operator is a bounded linear operator T : X → Y between two Banach spaces with finite-dimensional kernel and finite-dimensional (algebraic) cokernel , and with closed range . The last condition is actually redundant. The index of a Fredholm operator is the integer or in other words, Intuitively, Fredholm operators are those operators that are invertible "if finite-dimensional effects are ignored.
Enterprise application integrationEnterprise application integration (EAI) is the use of software and computer systems' architectural principles to integrate a set of enterprise computer applications. Enterprise application integration is an integration framework composed of a collection of technologies and services which form a middleware or "middleware framework" to enable integration of systems and applications across an enterprise.
Elliptic operatorIn the theory of partial differential equations, elliptic operators are differential operators that generalize the Laplace operator. They are defined by the condition that the coefficients of the highest-order derivatives be positive, which implies the key property that the principal symbol is invertible, or equivalently that there are no real characteristic directions. Elliptic operators are typical of potential theory, and they appear frequently in electrostatics and continuum mechanics.
Operator algebraIn functional analysis, a branch of mathematics, an operator algebra is an algebra of continuous linear operators on a topological vector space, with the multiplication given by the composition of mappings. The results obtained in the study of operator algebras are often phrased in algebraic terms, while the techniques used are often highly analytic. Although the study of operator algebras is usually classified as a branch of functional analysis, it has direct applications to representation theory, differential geometry, quantum statistical mechanics, quantum information, and quantum field theory.