Spatial epidemiologySpatial epidemiology is a subfield of epidemiology focused on the study of the spatial distribution of health outcomes; it is closely related to health geography. Specifically, spatial epidemiology is concerned with the description and examination of disease and its geographic variations. This is done in consideration of “demographic, environmental, behavioral, socioeconomic, genetic, and infections risk factors." Disease Mapping Disease maps are visual representations of intricate geographic data that provide a quick overview of said information.
Neutron starA neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses (), possibly more if the star was especially metal-rich. Except for black holes, neutron stars are the smallest and densest currently known class of stellar objects. Neutron stars have a radius on the order of and a mass of about . They result from the supernova explosion of a massive star, combined with gravitational collapse, that compresses the core past white dwarf star density to that of atomic nuclei.
Diffraction-limited systemIn optics, any optical instrument or system a microscope, telescope, or camera has a principal limit to its resolution due to the physics of diffraction. An optical instrument is said to be diffraction-limited if it has reached this limit of resolution performance. Other factors may affect an optical system's performance, such as lens imperfections or aberrations, but these are caused by errors in the manufacture or calculation of a lens, whereas the diffraction limit is the maximum resolution possible for a theoretically perfect, or ideal, optical system.
Point spread functionThe point spread function (PSF) describes the response of a focused optical imaging system to a point source or point object. A more general term for the PSF is the system's impulse response; the PSF is the impulse response or impulse response function (IRF) of a focused optical imaging system. The PSF in many contexts can be thought of as the extended blob in an image that represents a single point object, that is considered as a spatial impulse. In functional terms, it is the spatial domain version (i.e.
KrigingIn statistics, originally in geostatistics, kriging or Kriging, (pronounced /ˌˈkɹiːɡɪŋ/) also known as Gaussian process regression, is a method of interpolation based on Gaussian process governed by prior covariances. Under suitable assumptions of the prior, kriging gives the best linear unbiased prediction (BLUP) at unsampled locations. Interpolating methods based on other criteria such as smoothness (e.g., smoothing spline) may not yield the BLUP. The method is widely used in the domain of spatial analysis and computer experiments.
StarA star is an astronomical object comprising a luminous spheroid of plasma held together by self-gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night; their immense distances from Earth make them appear as fixed points of light. The most prominent stars have been categorised into constellations and asterisms, and many of the brightest stars have proper names. Astronomers have assembled star catalogues that identify the known stars and provide standardized stellar designations.
Runge–Kutta methodsIn numerical analysis, the Runge–Kutta methods (ˈrʊŋəˈkʊtɑː ) are a family of implicit and explicit iterative methods, which include the Euler method, used in temporal discretization for the approximate solutions of simultaneous nonlinear equations. These methods were developed around 1900 by the German mathematicians Carl Runge and Wilhelm Kutta. The most widely known member of the Runge–Kutta family is generally referred to as "RK4", the "classic Runge–Kutta method" or simply as "the Runge–Kutta method".
Chernoff boundIn probability theory, a Chernoff bound is an exponentially decreasing upper bound on the tail of a random variable based on its moment generating function. The minimum of all such exponential bounds forms the Chernoff or Chernoff-Cramér bound, which may decay faster than exponential (e.g. sub-Gaussian). It is especially useful for sums of independent random variables, such as sums of Bernoulli random variables. The bound is commonly named after Herman Chernoff who described the method in a 1952 paper, though Chernoff himself attributed it to Herman Rubin.
Multivariate interpolationIn numerical analysis, multivariate interpolation is interpolation on functions of more than one variable (multivariate functions); when the variates are spatial coordinates, it is also known as spatial interpolation. The function to be interpolated is known at given points and the interpolation problem consists of yielding values at arbitrary points . Multivariate interpolation is particularly important in geostatistics, where it is used to create a digital elevation model from a set of points on the Earth's surface (for example, spot heights in a topographic survey or depths in a hydrographic survey).
Polynomial regressionIn statistics, polynomial regression is a form of regression analysis in which the relationship between the independent variable x and the dependent variable y is modelled as an nth degree polynomial in x. Polynomial regression fits a nonlinear relationship between the value of x and the corresponding conditional mean of y, denoted E(y |x). Although polynomial regression fits a nonlinear model to the data, as a statistical estimation problem it is linear, in the sense that the regression function E(y | x) is linear in the unknown parameters that are estimated from the data.