Spatial epidemiology is a subfield of epidemiology focused on the study of the spatial distribution of health outcomes; it is closely related to health geography.
Specifically, spatial epidemiology is concerned with the description and examination of disease and its geographic variations. This is done in consideration of “demographic, environmental, behavioral, socioeconomic, genetic, and infections risk factors."
Disease Mapping
Disease maps are visual representations of intricate geographic data that provide a quick overview of said information. Mainly used for explanatory purposes, disease maps can be presented to survey high-risk areas and to help policy and resource allocation in said areas.
Geographic correlation studies
Geographic correlation studies attempt to study the geographical factors and their effects on geographically differentiated health outcomes. Measured on an ecologic scale, these factors include environmental variables (quality of surrounding space), socioeconomic and demographic statistics (income and race), or even lifestyle choices (nutrition or diet) of the population groups under study. This approach has the convenience of being able to employ already available data from various surveying sources.
Clustering, disease clusters, and surveillance.
Disease clusters, or spatial groupings of proximity and characteristically related epidemics. While the term itself is relatively poorly defined, it generally “implies an excess of cases above some background rate bounded in time and space.” Although clustering is not the most precise method for spatial analysis, it can and has proved useful for health-related surveillance and monitoring.
Because the statistical models used to draw up such research are complex, the data analysis and the interpretation of results should be carried out by qualified statisticians. Sometimes, the proliferation of errors in disease mapping has led to inefficient decision-making, implementation of inappropriate health policies and negative impact on the advancement of scientific knowledge.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Bases de la géomatique pour les ingénieur·e·s civil et en environnement. Présentation des méthodes d'acquisition, de gestion et de représentation des géodonnées. Apprentissage pratique avec des méthod
Acquisition de concepts et compétences de base liées à la représentation numérique des données géographiques et à leur insertion dans des SIG. Apprentissage de processus d'analyse spatiale pour les in
This course teaches how to apply exploratory spatial data analysis to health data. Teaching focuses on the basics of spatial statistics and of epidemiology, and proposes a context to analyse geodatase
Spatial analysis is any of the formal techniques which studies entities using their topological, geometric, or geographic properties. Spatial analysis includes a variety of techniques using different analytic approaches, especially spatial statistics. It may be applied in fields as diverse as astronomy, with its studies of the placement of galaxies in the cosmos, or to chip fabrication engineering, with its use of "place and route" algorithms to build complex wiring structures.
In a context of escalating public health challenges, including the rise of chronic diseases, the impact of climate change, and the COVID-19 pandemic, certain populations bear a disproportionate burden. As a result, there is an urgent need to develop public ...
Informed by longstanding artistic practice, this doctoral thesis approaches entanglements of Swiss coloniality in Brazil and Switzerland under the lens of land, archive, and visuality. The enduring legacies of imperial capitalism in the former Colonia Leop ...
Whether cardiovascular risk scores geographically aggregate and inform on spatial development of atherosclerotic cardiovascular diseases (ASCVD) remains unknown. Our aim is to determine the spatial distribution of 10-year predicted cardiovascular risk and ...