**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# On the number of lattice points in a small sphere and a recursive lattice decoding algorithm

Abstract

Let L be a lattice in . This paper provides two methods to obtain upper bounds on the number of points of L contained in a small sphere centered anywhere in . The first method is based on the observation that if the sphere is sufficiently small then the lattice points contained in the sphere give rise to a spherical code with a certain minimum angle. The second method involves Gaussian measures on L in the sense of Banaszczyk (Math Ann 296:625-635, 1993). Examples where the obtained bounds are optimal include some root lattices in small dimensions and the Leech lattice. We also present a natural decoding algorithm for lattices constructed from lattices of smaller dimension, and apply our results on the number of lattice points in a small sphere to conclude on the performance of this algorithm.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (7)

Algorithm

In mathematics and computer science, an algorithm (ˈælɡərɪðəm) is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can use conditionals to divert the code execution through various routes (referred to as automated decision-making) and deduce valid inferences (referred to as automated reasoning), achieving automation eventually.

Lattice (group)

In geometry and group theory, a lattice in the real coordinate space is an infinite set of points in this space with the properties that coordinate-wise addition or subtraction of two points in the lattice produces another lattice point, that the lattice points are all separated by some minimum distance, and that every point in the space is within some maximum distance of a lattice point.

Leech lattice

In mathematics, the Leech lattice is an even unimodular lattice Λ24 in 24-dimensional Euclidean space, which is one of the best models for the kissing number problem. It was discovered by . It may also have been discovered (but not published) by Ernst Witt in 1940. The Leech lattice Λ24 is the unique lattice in 24-dimensional Euclidean space, E24, with the following list of properties: It is unimodular; i.e., it can be generated by the columns of a certain 24×24 matrix with determinant 1. It is even; i.e.