Machine learningMachine learning (ML) is an umbrella term for solving problems for which development of algorithms by human programmers would be cost-prohibitive, and instead the problems are solved by helping machines 'discover' their 'own' algorithms, without needing to be explicitly told what to do by any human-developed algorithms. Recently, generative artificial neural networks have been able to surpass results of many previous approaches.
LIBSVMLIBSVM and LIBLINEAR are two popular open source machine learning libraries, both developed at the National Taiwan University and both written in C++ though with a C API. LIBSVM implements the sequential minimal optimization (SMO) algorithm for kernelized support vector machines (SVMs), supporting classification and regression. LIBLINEAR implements linear SVMs and logistic regression models trained using a coordinate descent algorithm.
Fundamental theorems of welfare economicsThere are two fundamental theorems of welfare economics. The first states that in economic equilibrium, a set of complete markets, with complete information, and in perfect competition, will be Pareto optimal (in the sense that no further exchange would make one person better off without making another worse off). The requirements for perfect competition are these: There are no externalities and each actor has perfect information. Firms and consumers take prices as given (no economic actor or group of actors has market power).
Edgeworth boxIn economics, an Edgeworth box, sometimes referred to as an Edgeworth-Bowley box, is a graphical representation of a market with just two commodities, X and Y, and two consumers. The dimensions of the box are the total quantities Ωx and Ωy of the two goods. Let the consumers be Octavio and Abby. The top right-hand corner of the box represents the allocation in which Octavio holds all the goods, while the bottom left corresponds to complete ownership by Abby. Points within the box represent ways of allocating the goods between the two consumers.
Cross-validation (statistics)Cross-validation, sometimes called rotation estimation or out-of-sample testing, is any of various similar model validation techniques for assessing how the results of a statistical analysis will generalize to an independent data set. Cross-validation is a resampling method that uses different portions of the data to test and train a model on different iterations. It is mainly used in settings where the goal is prediction, and one wants to estimate how accurately a predictive model will perform in practice.
Training, validation, and test data setsIn machine learning, a common task is the study and construction of algorithms that can learn from and make predictions on data. Such algorithms function by making data-driven predictions or decisions, through building a mathematical model from input data. These input data used to build the model are usually divided into multiple data sets. In particular, three data sets are commonly used in different stages of the creation of the model: training, validation, and test sets.
Predictive modellingPredictive modelling uses statistics to predict outcomes. Most often the event one wants to predict is in the future, but predictive modelling can be applied to any type of unknown event, regardless of when it occurred. For example, predictive models are often used to detect crimes and identify suspects, after the crime has taken place. In many cases, the model is chosen on the basis of detection theory to try to guess the probability of an outcome given a set amount of input data, for example given an email determining how likely that it is spam.
Multiclass classificationIn machine learning and statistical classification, multiclass classification or multinomial classification is the problem of classifying instances into one of three or more classes (classifying instances into one of two classes is called binary classification). While many classification algorithms (notably multinomial logistic regression) naturally permit the use of more than two classes, some are by nature binary algorithms; these can, however, be turned into multinomial classifiers by a variety of strategies.
Statistical classificationIn statistics, classification is the problem of identifying which of a set of categories (sub-populations) an observation (or observations) belongs to. Examples are assigning a given email to the "spam" or "non-spam" class, and assigning a diagnosis to a given patient based on observed characteristics of the patient (sex, blood pressure, presence or absence of certain symptoms, etc.). Often, the individual observations are analyzed into a set of quantifiable properties, known variously as explanatory variables or features.
Predictive analyticsPredictive analytics is a form of business analytics applying machine learning to generate a predictive model for certain business applications. As such, it encompasses a variety of statistical techniques from predictive modeling and machine learning that analyze current and historical facts to make predictions about future or otherwise unknown events. It represents a major subset of machine learning applications; in some contexts, it is synonymous with machine learning.