**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Training, validation, and test data sets

Summary

In machine learning, a common task is the study and construction of algorithms that can learn from and make predictions on data. Such algorithms function by making data-driven predictions or decisions, through building a mathematical model from input data. These input data used to build the model are usually divided into multiple data sets. In particular, three data sets are commonly used in different stages of the creation of the model: training, validation, and test sets.
The model is initially fit on a training data set, which is a set of examples used to fit the parameters (e.g. weights of connections between neurons in artificial neural networks) of the model. The model (e.g. a naive Bayes classifier) is trained on the training data set using a supervised learning method, for example using optimization methods such as gradient descent or stochastic gradient descent. In practice, the training data set often consists of pairs of an input vector (or scalar) and the corresponding output vector (or scalar), where the answer key is commonly denoted as the target (or label). The current model is run with the training data set and produces a result, which is then compared with the target, for each input vector in the training data set. Based on the result of the comparison and the specific learning algorithm being used, the parameters of the model are adjusted. The model fitting can include both variable selection and parameter estimation.
Successively, the fitted model is used to predict the responses for the observations in a second data set called the validation data set. The validation data set provides an unbiased evaluation of a model fit on the training data set while tuning the model's hyperparameters (e.g. the number of hidden units—layers and layer widths—in a neural network). Validation datasets can be used for regularization by early stopping (stopping training when the error on the validation data set increases, as this is a sign of over-fitting to the training data set).

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (4)

Related concepts (22)

Related courses (53)

Statistical learning theory

Statistical learning theory is a framework for machine learning drawing from the fields of statistics and functional analysis. Statistical learning theory deals with the statistical inference problem of finding a predictive function based on data. Statistical learning theory has led to successful applications in fields such as computer vision, speech recognition, and bioinformatics. The goals of learning are understanding and prediction. Learning falls into many categories, including supervised learning, unsupervised learning, online learning, and reinforcement learning.

Training, validation, and test data sets

In machine learning, a common task is the study and construction of algorithms that can learn from and make predictions on data. Such algorithms function by making data-driven predictions or decisions, through building a mathematical model from input data. These input data used to build the model are usually divided into multiple data sets. In particular, three data sets are commonly used in different stages of the creation of the model: training, validation, and test sets.

Bias–variance tradeoff

In statistics and machine learning, the bias–variance tradeoff is the property of a model that the variance of the parameter estimated across samples can be reduced by increasing the bias in the estimated parameters. The bias–variance dilemma or bias–variance problem is the conflict in trying to simultaneously minimize these two sources of error that prevent supervised learning algorithms from generalizing beyond their training set: The bias error is an error from erroneous assumptions in the learning algorithm.

This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple

Introduction aux phénomènes propagatifs dans les circuits hydrauliques, calculs de coups de béliers, comportement transitoire d'aménagements hydroélectriques, simulation numériques 1D du comportement

Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi

Related lectures (543)

Neural Networks: Deep Neural NetworksMATH-212: Analyse numérique et optimisation

Explores the basics of neural networks, with a focus on deep neural networks and their architecture and training.

Linear Regression and Gradient DescentPHYS-231: Data analysis for Physics

Covers linear regression, gradient descent, overfitting, and ridge regression among other concepts.

Introduction to Machine LearningPHYS-467: Machine learning for physicists

Covers the basics of machine learning for physicists and chemists, focusing on image classification and dataset labeling.

Shuqing Teresa Yeo, Amir Roshan Zamir, Oguzhan Fatih Kar

We present a method for making neural network predictions robust to shifts from the training data distribution. The proposed method is based on making predictions via a diverse set of cues (called 'middle domains') and ensembling them into one strong prediction. The premise of the idea is that predictions made via different cues respond differently to a distribution shift, hence one should be able to merge them into one robust final prediction. We perform the merging in a straightforward but principled manner based on the uncertainty associated with each prediction. The evaluations are performed using multiple tasks and datasets (Taskonomy, Replica, ImageNet, CIFAR) under a wide range of adversarial and non-adversarial distribution shifts which demonstrate the proposed method is considerably more robust than its standard learning counterpart, conventional deep ensembles, and several other baselines.

The shear stiffness of headed stud connector is a critical parameter for the calculation of deflection and inter-facial shear force for steel-concrete composite structure. Thus, this study presented a promising data-driven model auto-tuning Deep Forest (ATDF) to precisely predict the stud shear stiffness, where the novel Deep For-est algorithm is integrated with the Sequential Model-Based Optimization method to achieve automatic hyper -parameter optimization. Six variables having causal relationships with shear stiffness were extracted via mechanism and model analysis, including the effect of weld collar that cannot be considered in existing models and subsequently constituting a database of 425 push-out tests. Then the ATDF model was trained by combining the advantages of deep learning, ensemble learning, and auto-tuning techniques. It was approved to significantly outperform representative benchmark models with R values of 0.91 and 0.87 for training and testing sets. The ATDF was subjected to attribute importance analysis, which quantified the stud diameter and concrete elastic modulus as the most significant variables for shear stiffness, with the stud elastic modulus having the minimal effect. The model uncertainty of ATDF was further evaluated, revealing that it had the lowest bias and variability than those in existing empirical or semi-empirical models. Finally, the reliability analysis was conducted and the partial factors of ATDF under specified target reliability were derived.

2022Jean-Denis Georges Emile Courcol, Michele Migliore, Genrich Ivaska, Carmen Alina Lupascu, Luca Leonardo Bologna, Shailesh Appukuttan

In the last decades, brain modeling has been established as a fundamental tool for understanding neural mechanisms and information processing in individual cells and circuits at different scales of observation. Building data-driven brain models requires the availability of experimental data and analysis tools as well as neural simulation environments and, often, large scale computing facilities. All these components are rarely found in a comprehensive framework and usually require ad hoc programming. To address this, we developed the EBRAINS Hodgkin-Huxley Neuron Builder (HHNB), a web resource for building single cell neural models via the extraction of activity features from electrophysiological traces, the optimization of the model parameters via a genetic algorithm executed on high performance computing facilities and the simulation of the optimized model in an interactive framework. Thanks to its inherent characteristics, the HHNB facilitates the data-driven model building workflow and its reproducibility, hence fostering a collaborative approach to brain modeling.