Spherical coordinate systemIn mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a point is specified by three numbers: the radial distance of that point from a fixed origin; its polar angle measured from a fixed polar axis or zenith direction; and the azimuthal angle of its orthogonal projection on a reference plane that passes through the origin and is orthogonal to the fixed axis, measured from another fixed reference direction on that plane.
Cartesian coordinate systemIn geometry, a Cartesian coordinate system (UKkɑːrˈtiːzjən, USkɑːrˈtiʒən) in a plane is a coordinate system that specifies each point uniquely by a pair of real numbers called coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, called coordinate lines, coordinate axes or just axes (plural of axis) of the system. The point where they meet is called the origin and has (0, 0) as coordinates.
BackpropagationAs a machine-learning algorithm, backpropagation performs a backward pass to adjust the model's parameters, aiming to minimize the mean squared error (MSE). In a single-layered network, backpropagation uses the following steps: Traverse through the network from the input to the output by computing the hidden layers' output and the output layer. (the feedforward step) In the output layer, calculate the derivative of the cost function with respect to the input and the hidden layers.
Astronomical coordinate systemsAstronomical (or celestial) coordinate systems are organized arrangements for specifying positions of satellites, planets, stars, galaxies, and other celestial objects relative to physical reference points available to a situated observer (e.g. the true horizon and north to an observer on Earth's surface). Coordinate systems in astronomy can specify an object's position in three-dimensional space or plot merely its direction on a celestial sphere, if the object's distance is unknown or trivial.
Geographic coordinate systemThe geographic coordinate system (GCS) is a spherical or geodetic coordinate system for measuring and communicating positions directly on the Earth as latitude and longitude. It is the simplest, oldest and most widely used of the various spatial reference systems that are in use, and forms the basis for most others. Although latitude and longitude form a coordinate tuple like a cartesian coordinate system, the geographic coordinate system is not cartesian because the measurements are angles and are not on a planar surface.
Genetic algorithmIn computer science and operations research, a genetic algorithm (GA) is a metaheuristic inspired by the process of natural selection that belongs to the larger class of evolutionary algorithms (EA). Genetic algorithms are commonly used to generate high-quality solutions to optimization and search problems by relying on biologically inspired operators such as mutation, crossover and selection. Some examples of GA applications include optimizing decision trees for better performance, solving sudoku puzzles, hyperparameter optimization, causal inference, etc.
Genetic programmingIn artificial intelligence, genetic programming (GP) is a technique of evolving programs, starting from a population of unfit (usually random) programs, fit for a particular task by applying operations analogous to natural genetic processes to the population of programs. The operations are: selection of the fittest programs for reproduction (crossover), replication and/or mutation according to a predefined fitness measure, usually proficiency at the desired task.