**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Cartesian coordinate system

Summary

In geometry, a Cartesian coordinate system (UKkɑːrˈtiːzjən, USkɑːrˈtiʒən) in a plane is a coordinate system that specifies each point uniquely by a pair of real numbers called coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, called coordinate lines, coordinate axes or just axes (plural of axis) of the system. The point where they meet is called the origin and has (0, 0) as coordinates.
Similarly, the position of any point in three-dimensional space can be specified by three Cartesian coordinates, which are the signed distances from the point to three mutually perpendicular planes. More generally, n Cartesian coordinates specify the point in an n-dimensional Euclidean space for any dimension n. These coordinates are the signed distances from the point to n mutually perpendicular fixed hyperplanes.
Cartesian coordinates are named for René Descartes, whose invention of them in the 17th century revolutionized mathematics by prov

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (54)

Loading

Loading

Loading

Related people (3)

Related units (3)

Related concepts (168)

Mathematics

Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These top

Geometry

Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest b

Euclidean space

Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's Elements, it was the three-dimensional space of Euclidean geometry, but i

Related courses (184)

PHYS-100: Advanced physics I (mechanics)

La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant la situation et appliquant les lois de la physique.

PHYS-101(k): General physics : mechanics

Le but du cours de physique générale est de donner à l'étudiant.e les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant.e est capable de prévoir quantitativement les conséquences de ces phénomènes avec des outils théoriques appropriés.

PHYS-427: Relativity and cosmology I

Introduce the students to general relativity and its classical tests.

Related lectures

Loading

Related lectures (582)

The stability for all generic equilibria of the Lie-Poisson dynamics of the so(4) rigid body dynamics is completely determined. It is shown that for the generalized rigid body certain Cartan subalgebras (called of coordinate type) of so(n) are equilibrium points for the rigid body dynamics. In the case of so(4) there are three coordinate type Cartan subalgebras whose intersection with a regular adjoint orbit gives three Weyl group orbits of equilibria. These coordinate type Cartan subalgebras are the analogues of the three axes of equilibria for the classical rigid body in so(3). In addition to these coordinate type Cartan equilibria there are others that come in curves.

2012Mihael Erakovic, Christophe Louis Joseph Jean-Luc Vaillant

We derive a multidimensional instanton theory for calculating ground-state tunneling splittings in Cartesian coordinates for general paths. It is an extension of the method by Mil'nikov and Nakamura [J. Chem. Phys. 115, 6881 (2001)] to include asymmetric paths that are necessary for calculating tunneling splitting patterns in multi-well systems, such as water clusters. The approach avoids multiple expensive matrix diagonalizations to converge the fluctuation prefactor in the ring-polymer instanton (RPI) method, and instead replaces them by an integration of a Riccati differential equation. When combined with the string method for locating instantons, we avoid the need to converge the calculation with respect to the imaginary time period of the semiclassical orbit, thereby reducing the number of convergence parameters of the optimized object to just one: the number of equally spaced system replicas used to represent the instanton path. The entirety of the numerical effort is thus concentrated in optimizing the shape of the path and evaluating hessians along the path, which is a dramatic improvement over RPI. In addition to the standard instanton approximations, we neglect the coupling of vibrational modes to external rotations. The method is tested on the model potential of malonaldehyde and on the water dimer and trimer, giving close agreement with RPI at a much-reduced cost. Published under license by AIP Publishing.

2020This thesis was carried out within the framework of a scientific cooperation project entitled “Application of High Power Electromagnetics to Human Safety” developed by the EPFL, the National University of Colombia and Los Andes University, Colombia. The project was funded by the Swiss Agency for Development and Cooperation (SDC) through the EPFL Centre Coopéation & Développement (CODEV). The Scientific Cooperation aimed at the study and development of techniques for the generation of high power electromagnetic signals for the disruption or preemptive activation of Improvised Explosive Devices (IEDs) during humanitarian clearance activities. The results and conclusions of the thesis will be applied to the construction of a resonant radiator, which can be used for securing humanitarian demining operations in Colombia. The thesis is devoted to the analysis of a specific type of resonant radiators known as Switched Oscillators (SWO). An SWO is a radiator constituted by a high voltage charging circuit that drives a quarter-wave transmission line resonator connected to an antenna. An SWO can produce high-amplitude, short duration, electromagnetic fields, with a moderate bandwidth, when compared to the main resonance frequency. The outcome of the thesis can be also be used in electromagnetic compatibility applications, for the production of resonant, high power electromagnetic fields, with the aim of testing the immunity of electronic systems against Intentional Electromagnetic Interference (IEMI) attacks. The thesis is divided in three parts. The first part deals with the electrostatic design of an SWO. A method for producing an optimized design of the electrodes forming the spark gap of the SWO is presented. The method is based on the generation of a curvilinear coordinate space on which the electrodes are conformal to one of the coordinate axis of the space. Laplace equation is solved in the interelectrodic space, obtaining an analytical solution for the electrostatic distribution. Furthermore, using appropriate mathematical manipulations, we derive an analytical expression for the impedance of the transmission line formed by the proposed electrodes. The second part of the thesis is devoted to the analysis of SWOs in the frequency domain. An original analysis approach, based on the chain-parameter technique, is proposed in which the SWO and the connected antenna are described using a two-port network using which a transfer function between the input voltage and the radiated field is established. A closed form expression of the resonance frequency of the SWO is also obtained. The developed technique makes it possible to study the response of an SWO when connected to an arbitrary antenna with a frequency-dependent input impedance. The final part of the thesis presents the construction and test of an SWO prototype. The prototype design is based on the theoretical developments presented in the first two parts of the thesis. The realized SWO is experimentally characterized using different antennas. It is characterized by an input voltage of 30 kV and a resonance frequency of 433 MHz. Radiated electric fields using monopole antennas were in the order of 10 kV/m at a distance of 1.5 m. The prototype is used for testing the validity of the electrodynamic model for the analysis of SWOs connected to frequency dependent antennas. Different monopole antennas connected to the SWO are considered and the radiated fields are measured and compared with theoretical calculations. It is shown that the developed theoretical model is able to reproduce with a good accuracy the behavior of the SWO connected to a frequency dependent antenna.