Prime-counting functionIn mathematics, the prime-counting function is the function counting the number of prime numbers less than or equal to some real number x. It is denoted by pi(x) (unrelated to the number pi). Prime number theorem Of great interest in number theory is the growth rate of the prime-counting function. It was conjectured in the end of the 18th century by Gauss and by Legendre to be approximately where log is the natural logarithm, in the sense that This statement is the prime number theorem.
Riemann hypothesisIn mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1/2. Many consider it to be the most important unsolved problem in pure mathematics. It is of great interest in number theory because it implies results about the distribution of prime numbers. It was proposed by , after whom it is named.
Prime omega functionIn number theory, the prime omega functions and count the number of prime factors of a natural number Thereby (little omega) counts each distinct prime factor, whereas the related function (big omega) counts the total number of prime factors of honoring their multiplicity (see arithmetic function). That is, if we have a prime factorization of of the form for distinct primes (), then the respective prime omega functions are given by and . These prime factor counting functions have many important number theoretic relations.
Prime number theoremIn mathematics, the prime number theorem (PNT) describes the asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they become larger by precisely quantifying the rate at which this occurs. The theorem was proved independently by Jacques Hadamard and Charles Jean de la Vallée Poussin in 1896 using ideas introduced by Bernhard Riemann (in particular, the Riemann zeta function).
Arithmetic functionIn number theory, an arithmetic, arithmetical, or number-theoretic function is for most authors any function f(n) whose domain is the positive integers and whose range is a subset of the complex numbers. Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of n". An example of an arithmetic function is the divisor function whose value at a positive integer n is equal to the number of divisors of n.
Generalized Riemann hypothesisThe Riemann hypothesis is one of the most important conjectures in mathematics. It is a statement about the zeros of the Riemann zeta function. Various geometrical and arithmetical objects can be described by so-called global L-functions, which are formally similar to the Riemann zeta-function. One can then ask the same question about the zeros of these L-functions, yielding various generalizations of the Riemann hypothesis. Many mathematicians believe these generalizations of the Riemann hypothesis to be true.
Chebyshev functionIn mathematics, the Chebyshev function is either a scalarising function (Tchebycheff function) or one of two related functions. The first Chebyshev function θ (x) or θ (x) is given by where denotes the natural logarithm, with the sum extending over all prime numbers p that are less than or equal to x. The second Chebyshev function ψ (x) is defined similarly, with the sum extending over all prime powers not exceeding x where Λ is the von Mangoldt function.
Riemann zeta functionThe Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (zeta), is a mathematical function of a complex variable defined as for , and its analytic continuation elsewhere. The Riemann zeta function plays a pivotal role in analytic number theory, and has applications in physics, probability theory, and applied statistics. Leonhard Euler first introduced and studied the function over the reals in the first half of the eighteenth century.
Additive functionIn number theory, an additive function is an arithmetic function f(n) of the positive integer variable n such that whenever a and b are coprime, the function applied to the product ab is the sum of the values of the function applied to a and b: An additive function f(n) is said to be completely additive if holds for all positive integers a and b, even when they are not coprime. Totally additive is also used in this sense by analogy with totally multiplicative functions. If f is a completely additive function then f(1) = 0.
Logarithmic integral functionIn mathematics, the logarithmic integral function or integral logarithm li(x) is a special function. It is relevant in problems of physics and has number theoretic significance. In particular, according to the prime number theorem, it is a very good approximation to the prime-counting function, which is defined as the number of prime numbers less than or equal to a given value . The logarithmic integral has an integral representation defined for all positive real numbers x ≠ 1 by the definite integral Here, ln denotes the natural logarithm.