Publication

Bottom boundary mixing: the role of near-sediment density stratification

Alfred Johny Wüest
1998
Book chapter
Abstract

The turbulent dynamics and stratification of bottom boundary layers, as well as the net diapycnal buoyancy flux in the deep water, have been observed to vary strongly among lakes. The most relevant parameters governing the different regimes are the bottom current stress and the rate of release of dissolved solids from the sediment. The ratio of boundary-induced mixing to the density flux associated with the flux of ions from the sediment determines whether the bottom boundary layer is extremely stably stratified or well-mixed. The aim of this contribution is (1) to demonstrate these two boundary phenomena, (2) to give a physical criterion for assessing the two mixing regimes, (3) to present a potential model to quantify the boundary-induced buoyancy flux and the basinwide diapycnal diffusivity, and (4) to test the model with data from two representative lakes with significantly different deep-water mixing characteristics.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.