Lake stratification is the tendency of lakes to form separate and distinct thermal layers during warm weather. Typically stratified lakes show three distinct layers: the epilimnion, comprising the top warm layer; the thermocline (or metalimnion), the middle layer, whose depth may change throughout the day; and the colder hypolimnion, extending to the floor of the lake.
Every lake has a set mixing regime that is influenced by lake morphometry and environmental conditions. However, changes to human influences in the form of land use change, increases in temperature, and changes to weather patterns have been shown to alter the timing and intensity of stratification in lakes around the globe. Rising air temperatures have the same effect on lake bodies as a physical shift in geographic location, with tropical zones being particularly sensitive. These changes can further alter the fish, zooplankton, and phytoplankton community composition, in addition to creating gradients that alter the availability of dissolved oxygen and nutrients.
The thermal stratification of lakes refers to a change in the temperature at different depths in the lake, and is due to the density of water varying with temperature. Cold water is denser than warm water and the epilimnion generally consists of water that is not as dense as the water in the hypolimnion. However, the temperature of maximum density for freshwater is 4 °C. In temperate regions where lake water warms up and cools through the seasons, a cyclical pattern of overturn occurs that is repeated from year to year as the cold dense water at the top of the lake sinks (see stable and unstable stratification). For example, in dimictic lakes the lake water turns over during the spring and the fall. This process occurs more slowly in deeper water and as a result, a thermal bar may form. If the stratification of water lasts for extended periods, the lake is meromictic.
In shallow lakes, stratification into epilimnion, metalimnion, and hypolimnion often does not occur, as wind or cooling causes regular mixing throughout the year.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Focus is on lakes, rivers and reservoirs as aquatic systems. Specific is the quantitative analyse (incl. exercises) of physical, biogeochemical and sedimentological processes / interactions. The goal
A lake is a naturally occurring, relatively large body of water localized in a basin surrounded by dry land. A lake generally has a slower-moving flow than the inflow or outflow stream(s) that serve to feed or drain it. Lakes lie completely on land and are separate from the ocean, although, like the much larger oceans, they form part of the Earth's water cycle by serving as large standing pools of storage water. Most lakes are freshwater and account for almost all the world's surface freshwater, but some are salt lakes with salinities even higher than that of seawater.
The hypolimnion or under lake is the dense, bottom layer of water in a thermally-stratified lake. The word "hypolimnion" is derived from λιμνίον. It is the layer that lies below the thermocline. Typically the hypolimnion is the coldest layer of a lake in summer, and the warmest layer during winter. In deep, temperate lakes, the bottom-most waters of the hypolimnion are typically close to 4 °C throughout the year. The hypolimnion may be much warmer in lakes at warmer latitudes.
The epilimnion or surface layer is the top-most layer in a thermally stratified lake. The epilimnion is the layer that is most affected by sunlight, its thermal energy heating the surface, thereby making it warmer and less dense. As a result, the epilimnion sits above the deeper metalimnion and hypolimnion, which are colder and denser. Additionally, the epilimnion is typically has a higher pH and higher dissolved oxygen concentration than the hypolimnion. In the water column, the epilimnion sits above all other layers.
Explores redox reactions in environmental contexts, covering measurement of potentials, aquatic systems, groundwater recharge, and water treatment processes.
Freshwater algae exhibit complex dynamics, particularly in meso-oligotrophic lakes with sudden and dramatic increases in algal biomass following long periods of low background concentration. While the fundamental prerequisites for algal blooms, namely ligh ...
Springernature2024
Global change exposes ecosystems to changes in the frequency, magnitude, and concomitancy of disturbances, which impact the composition and functioning of these systems. Here, we experimentally evaluate the effects of salinity disturbances and eutrophicati ...
Increased periods of bottom water anoxia in deep temperate lakes due to decreasing frequency and depth of water column mixing in a warming climate may result in the reductive dissolution of iron minerals and increased flux of nutrients from the sediment in ...