Iterative EEG-based Natural Image Search under RSVP
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Visual search is a good illustration about how the brain coordinates a variety of functions such as visual clues extraction from the scene, coordination of the eye-movements, accumu- lation of visual information and visual recognition. It has an important ...
Content-based image retrieval aims at substituting traditional indexing based on manual annotation by using automatically-extracted visual indexing features. Novel techniques are needed however to efficiently deal with the semantic gap (i.e. the partial ma ...
Our research addresses the need for an efficient, effective, and interactive access to large-scale image collections. Image retrieval needs are evolving beyond the capabilities of the traditional indexing based on manual annotation, and the most desirable ...
In this paper we present an efficient method for Content Based Image Retrieval (CBIR) of occluded images using DCT-phase. The proposed method utilizes a novel correlation metric for ternary-valued DCT-phase, as well as a region merging method to reconstruc ...
State of the art content-based image retrieval algorithms owe their excellent performance to the rich semantics encoded in the deep activations of a convolutional neural network. The difference between these algorithms lies mostly in how activations are co ...
Image-based retrieval in large Earth observation archives is difficult, because one needs to navigate across thousands of candidate matches only with the proposition image as a guide. By using text as a query language, the retrieval system gains in usabili ...
We study the query-based attack against image retrieval to evaluate its robustness against adversarial examples under the black-box setting, where the adversary only has query access to the top-1 ranked unlabeled images from the database. Compared with que ...
In this work, we resolve a big challenge that most current image quality metrics (IQMs) are unavailable across different image contents, especially simultaneously coping with natural scene (NS) images or screen content (SC) images. By comparison with exist ...
Content Based Image Retrieval (CBIR) has gained a lot of interest over the last two decades. The need to search and retrieve images from databases, based on information (“features”) extracted from the image itself, is becoming increasingly important. CBIR ...
In this report we study the ways to exploit the vast amount of information inherent in the plenoptic space and constraints of the plenoptic function to improve the efficiency of image retrieval, recognition and matching techniques. The specific application ...