Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
During reaching actions, the human central nerve system (CNS) generates the trajectories that optimize effort and time. When there is an obstacle in the path, we make sure that our arm passes the obstacle with a sufficient margin. This comfort margin varies between individuals. When passing a fragile object, risk-averse individuals may adopt a larger margin by following the longer path than risk-prone people do. However, it is not known whether this variation is associated with a personalized cost function used for the individual optimal control policies and how it is represented in our brain activity. This study investigates whether such individual variations in evaluation criteria during reaching results from differentiated weighting given to energy minimization versus comfort, and monitors brain error-related potentials (ErrPs) evoked when subjects observe a robot moving dangerously close to a fragile object. Seventeen healthy participants monitored a robot performing safe, daring and unsafe trajectories around a wine glass. Each participant displayed distinct evaluation criteria on the energy efficiency and comfort of robot trajectories. The ErrP-BCI outputs successfully inferred such individual variation. This study suggests that ErrPs could be used in conjunction with an optimal control approach to identify the personalized cost used by CNS. It further opens new avenues for the use of brain-evoked potential to train assistive robotic devices through the use of neuroprosthetic interfaces.
Mahmut Selman Sakar, Lorenzo Francesco John Noseda
Dario Floreano, Valentin Wüest, Davide Scaramuzza
, ,