**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Superfluid–insulator transition in weakly interacting disordered Bose gases: a kernel polynomial approach

Abstract

An iterative scheme based on the kernel polynomial method is devised for the efficient computation of the one-body density matrix of weakly interacting Bose gases within Bogoliubov theory. This scheme is used to analyze the coherence properties of disordered bosons in one and two dimensions. In the one-dimensional geometry, we examine the quantum phase transition between superfluid and Bose glass at weak interactions, and we recover the scaling of the phase boundary that was characterized using a direct spectral approach by Fontanesi et al (2010 Phys. Rev. A 81 053603). The kernel polynomial scheme is also used to study the disorder-induced condensate depletion in the two-dimensional geometry. Our approach paves the way for an analysis of coherence properties of Bose gases across the superfluid-insulator transition in two and three dimensions.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (11)

Related publications (2)

Superfluidity

Superfluidity is the characteristic property of a fluid with zero viscosity which therefore flows without any loss of kinetic energy. When stirred, a superfluid forms vortices that continue to rotate indefinitely. Superfluidity occurs in two isotopes of helium (helium-3 and helium-4) when they are liquefied by cooling to cryogenic temperatures. It is also a property of various other exotic states of matter theorized to exist in astrophysics, high-energy physics, and theories of quantum gravity.

Bose gas

An ideal Bose gas is a quantum-mechanical phase of matter, analogous to a classical ideal gas. It is composed of bosons, which have an integer value of spin, and abide by Bose–Einstein statistics. The statistical mechanics of bosons were developed by Satyendra Nath Bose for a photon gas, and extended to massive particles by Albert Einstein who realized that an ideal gas of bosons would form a condensate at a low enough temperature, unlike a classical ideal gas. This condensate is known as a Bose–Einstein condensate.

Density matrix

In quantum mechanics, a density matrix (or density operator) is a matrix that describes the quantum state of a physical system. It allows for the calculation of the probabilities of the outcomes of any measurement performed upon this system, using the Born rule. It is a generalization of the more usual state vectors or wavefunctions: while those can only represent pure states, density matrices can also represent mixed states.

In this thesis, we study the quantum phase transition triggered by an external random po- tential in ultra-cold low-dimensional weakly-interacting Bose gases at zero temperature. In one-dimensional sy

This thesis is devoted to the study of the effect of disorder on low-dimensional weakly interacting Bose gases. In particular, the disorder triggers a quantum phase transition in one dimension at zero