A major limitation of solid-state dye-sensitized solar cells is a short electron diffusion length, which is due to fast recombination between electrons in the TiO2 electron-transporting layer and holes in the 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (Spiro-OMeTAD) hole-transporting layer. In this report, the sensitizing dye that separates the TiO2 from the Spiro-OMeTAD was engineered to slow recombination and increase device performance. Through the synthesis and characterization of three new organic D-pi-A sensitizing dyes (WN1, WN3, and WN3.1), the quantity and placement of alkyl chains on the sensitizing dye were found to play a significant role in the suppression of recombination. In solid-state devices using Spiro-OMeTAD as the hole-transport material, these dyes achieved the following efficiencies: 4.9% for WN1, 5.9% for WN3, and 6.3% for WN3.1, compared to 6.6% achieved with Y123 as a reference dye. Of the dyes investigated in this study, WN3.1 is shown to be the most effective at suppressing recombination in solid-state dye-sensitized solar cells, using transient photovoltage and photocurrent measurements.
Michael Graetzel, Shaik Mohammed Zakeeruddin, Felix Thomas Eickemeyer, Peng Wang, Ming Ren
Jacques-Edouard Moser, Kai Zhu, Etienne Christophe Socie, George Cameron Fish, Aaron Tomas Terpstra
Paul Joseph Dyson, Ursula Röthlisberger, Felix Thomas Eickemeyer, Lukas Pfeifer, Virginia Carnevali, Nikolaos Lempesis, Lorenzo Agosta, Masaud Hassan S Almalki, Haizhou Lu, Yeonju Kim, Jaeki Jeong