Imaging of high-Q cavity optical modes by electron energy-loss microscopy
Related publications (42)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Spectral imaging is a fundamental diagnostic technique with widespread application. Conventional spectral imaging approaches have intrinsic limitations on spatial and spectral resolutions due to the physical components they rely on. To overcome these physi ...
Fluorescence super-resolution microscopy has allowed unprecedented insight into the workings of biological systems below the diffraction limit of light. Over the past decade, it has overcome several challenges to deliver 3D, multi-color and faster imaging ...
The imaging of integrated circuits across different length scales is required for failure analysis, design validation and quality control. At present, such inspection is accomplished using a hierarchy of different probes, from optical microscopy on the mil ...
We show how the kinetics of a fast and irreversible chemical reaction in a nanocrystalline material at high temperature can be studied using nanosecond electron pulses in an electron microscope. Infrared laser pulses first heat a nanocrystalline oxide laye ...
Eigenmodes are central to the study of resonant phenomena in all areas of physics.
However, their use in nano-optics seems to have been hindered and delayed for various
reasons. First, due to their small size, the response of nanostructures to a far-field
...
The integration of ultrafast laser systems with transmission electron microscopes led to the extension of conventional electron microscopy (PINEM) to the 4th dimension, time, and new techniques as photon-induced near-field electron microscopy became availa ...
In Ti-intercalated self-doped 1T-TiSe2 crystals, the charge density wave (CDW) superstructure induces two nonequivalent sites for Ti dopants. Recently, it has been shown that increasing Ti doping dramatically influences the CDW by breaking it into phase-sh ...
Defects are key to enhance or deploy particular materials properties. In this thesis I present analyses of the impact of defects on the electronic structure of materials using combined experimental and theoretical Electron energy loss spectroscopy (EELS) i ...
Transmission electron microscopy (TEM) offers an ample range of complementary techniques which are able to provide essential information about the physical, chemical and structural properties of materials at the atomic scale, and hence makes a vast impact ...
We demonstrate the fabrication of a hybrid PDMS/glass microfluidic layer that can be placed on top of non-transparent samples and allows high-resolution optical microscopy through it. The layer mimics a glass coverslip to limit optical aberrations and can ...