Publication

Nanosecond electron pulses in the analytical electron microscopy of a fast irreversible chemical reaction

2019
Journal paper
Abstract

We show how the kinetics of a fast and irreversible chemical reaction in a nanocrystalline material at high temperature can be studied using nanosecond electron pulses in an electron microscope. Infrared laser pulses first heat a nanocrystalline oxide layer on a carbon film, then single nanosecond electron pulses allow imaging, electron diffraction and electron energy-loss spectroscopy. This enables us to study the evolution of the morphology, crystallography, and elemental composition of the system with nanosecond resolution. Here, NiO nanocrystals are reduced to elemental nickel within 5 mu s after the laser pulse. At high temperatures induced by laser heating, reduction results first in a liquid nickel phase that crystallizes on microsecond timescales. We show that the reaction kinetics in the reduction of nanocrystalline NiO differ from those in bulk materials. The observation of liquid nickel as a transition phase explains why the reaction is first order and occurs at high rates.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Transmission electron microscopy
Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device.
Electron diffraction
Electron diffraction refers to changes in the direction of electron beams due to interactions with atoms. Close to the atoms the changes are described as Fresnel diffraction; far away they are called Fraunhofer diffraction. The resulting map of the directions of the electrons far from the sample (Fraunhofer diffraction) is called a diffraction pattern, see for instance Figure 1. These patterns are similar to x-ray and neutron diffraction patterns, and are used to study the atomic structure of gases, liquids, surfaces and bulk solids.
Electron microscope
An electron microscope is a microscope that uses a beam of electrons as a source of illumination. They use electron optics that are analogous to the glass lenses of an optical light microscope. As the wavelength of an electron can be up to 100,000 times shorter than that of visible light, electron microscopes have a higher resolution of about 0.1 nm, which compares to about 200 nm for light microscopes.
Show more
Related publications (108)

Non-negative matrix factorization-aided phase unmixing and trace element quantification of STEM-EDXS data

Cécile Hébert, Duncan Alexander, James Badro, Farhang Nabiei, Hui Chen

Energy-dispersive X-ray spectroscopy (EDXS) mapping with a scanning transmission electron microscope (STEM) is commonly used for chemical characterization of materials. However, STEM-EDXS quantification becomes challenging when the phases constituting the ...
Elsevier2024

Electron spectrometer calibration method

Tobias Kippenberg, Fabrizio Carbone, Alexey Sapozhnik, Yujia Yang, Thomas La Grange, Arslan Sajid Raja

The present invention concerns an energy dispersion calibration method for calibrating an electron spectrometer of an electron spectrometer system including at least one electron emission source, electron optics and the electron spectrometer. The method co ...
2023

Analytics at the nanometer and nanosecond scales by short electron pulses in an electron microscope

Chemical reactions and phase transformations in nanometer-size objects may happen at very short timescales, so conventional characterization tools are not applicable. A new technique combining high spatial and temporal resolution is ultrafast (or dynamic) ...
SPRINGER2022
Show more
Related MOOCs (17)
Transmission Electron Microscopy for Materials Sciences
Learn about the fundamentals of transmission electron microscopy in materials sciences: you will be able to understand papers where TEM has been used and have the necessary theoretical basis for takin
Transmission Electron Microscopy for Materials Sciences
Learn about the fundamentals of transmission electron microscopy in materials sciences: you will be able to understand papers where TEM has been used and have the necessary theoretical basis for takin
Synchrotrons and X-Ray Free Electron Lasers (part 1)
Synchrotrons and X-Ray Free Electron Lasers (part 1)
Show more